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Earth’s ionosphere is a plasma, moving in Earth’s magnetic field. We next consider a model for the
propagation of electromagnetic waves which shows some of the effects of a magnetic field on the propagation.

1 Electromagnetic waves in plasma with a magnetic field
Consider an electromagnetic wave passing through a medium with a strong, static, uniform magnetic in-
duction B0 in the same direction as the wave propagation. We neglect damping (due to collisions of the
particles of the medium) and we neglect the additional magnetic field produced by the movement of the
charges. Then Newton’s second law for the motion of an electron with charge −e becomes

mẍ = −eẋ×B0 − eEe−iωt

1.1 Circular polarization
Think of the waves as a superposition of the two possible circular polarizations, ε1 ± iε2,

E = (ε1 ± iε2)E0e
−iωt

To see the meaning of the circular polarization, consider the real part,

E = Re (ε1 ± iε2)E0e
−iωt

= ε1 cosωt± ε2 sinωt

= E0 (ε1 cosωt± ε2 sinωt)

The two resulting polarization vectors,

ε+Re (t) = ε1 cosωt+ ε2 sinωt

ε−Re (t) = ε1 cosωt− ε2 sinωt

rotate in opposite directions in the plane of the fields. The imaginary part includes the two polarizations
orthogonal to these, rotating in the corresponding directions.

With the positive polarization, ε+Re (t), the rotation is counterclockwise in the
(
ε1 = î, ε2 = ĵ

)
plane.

This is called left circularly polarized, or positive helicity (but be warned: the opposite convention also
is sometimes used). The second polarization rotates the opposite direction and is called right circularly
polarized, or negative helicity. Positive or negative helicity correspond to whether the angular momentum
vector lies parallel to, or anti-parallel to, the direction of propagation.

In the following sections, the top sign is for positive helicity and the lower sign is for negative helicity.
It is also possible to have waves with the polarizations mixed unevenly,

E = (E1ε1 ± iE2ε2) e
−iωt

These are called elliptically polarized.
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1.2 Solving for the displacement of the electron
Since the magnetic field lies in the direction of propagation, it is orthogonal to both polarization vectors.
Therefore, the only forces act in the plane orthogonal to the direction of propagation. Any component of
velocity of the electron in the direction of the wave remains constant, so we examine only the orthogonal
directions. Setting

x = (x1ε1 ± ix2ε2) e−iωt

with real part,

Re (x) = (x1 cosωt) ε1 ± (x2 sinωt) ε2

so that the position vector rotates in an ellipse. Then the equation of motion becomes

mẍ = −eẋ×B0 − eEe−iωt

−ω2m (x1ε1 ± ix2ε2) e−iωt = +iωe (x1ε1 ± ix2ε2) e−iωt ×B0 − e (ε1 ± iε2)Ee−iωt

Expanding the cross product term,

iωe (x1ε1 ± ix2ε2) e−iωt ×B0 = iωe (x1ε1 ×B0 ± ix2ε2 ×B0) e
−iωt

= iωe (−x1ε2 ± ix2ε1)B0e
−iωt

we write the separate components

−ω2m (x1ε1) = +iωe (±ix2ε1)B0 − eε1E
−ω2m (±ix2ε2) = +iωe (−x1ε2)B0 − e (±iε2)E

The first gives

−ω2mx1 = ∓ωex2ε1B0 − eE

x1 = ±eB0

mω
x2 +

eE

mω2

and the second,

±iω2mx2 = +iωex1B0 ± ieE

x2 = ±eB0

mω
x1 +

eE

mω2

Now substitute the first into the second to find

x2 = ±eB0

ωm

(
±eB0

mω
x2 +

eE

mω2

)
+

eE

mω2

x2 =

(
eB0

ωm

)2

x2 ±
e2B0E

m2ω3
+

eE

mω2(
1−

(
eB0

ωm

)2
)
x2 =

eE

mω2

(
1± eB0

mω

)

x2 =
eE

mω2

1± eB0

mω

1−
(
eB0

ωm

)2
Define the precession frequency,

ωB ≡
eB0

m
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Then, factoring the denominator on the right, we have

x2 =
eE

mω2

1± ωB

ω(
1− ωB

ω

) (
1 + ωB

ω

)
=

eE

mω2

1

1∓ ωB

ω

=
eE

mω

1

ω ∓ ωB
for x2. The result for x1 is therefore,

x1 = ±eB0

mω
x2 +

eE

mω2

=
eE

mω2

(
1± ωB

ω ∓ ωB

)
=

eE

mω2

(
ω ∓ ωB ± ωB
ω ∓ ωB

)
=

eE

mω

(
1

ω ∓ ωB

)
so reconstructing the full position vector,

x = (x1ε1 ± ix2ε2) e−iωt

=

(
eE

mω

(
1

ω ∓ ωB

)
ε1 ± i

eE

mω

1

ω ∓ ωB
ε2

)
e−iωt

=
e

mω

(
1

ω ∓ ωB

)
(ε1 ± iε2)Ee−iωt

and finally,

x =
e

mω

(
1

ω ∓ ωB

)
E

Physically, what happens is that each circular polarization drives the electron position in a corresponding
circle, with the amplitude of the circle diverging if the wave is at the precession frequency of the electron.
Notice the very different behavior of the two polarizations.

2 Dielectric constant
The dielectric constant is found in the same way as for our previous model. We repeat the argument with
this new solution.

The electric dipole moment is

p = −ex

= − e2

mω

(
1

ω ∓ ωB

)
E

Let there be N molecules per unit volume with Z electrons per molecule, with a fraction fi of the electrons
having binding frequency ωi0 and damping γi, accounting for the different binding energies of the different
electrons. The total of all the fi should be the total number of electrons,

∑
i fi = Z. The dipole moment

for each molecule is then

pmol = −
e2

mω

∑
i

fi
ω ∓ ωB

E
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Then, since the total dipole moment per unit volume is P = Npmol = ε0χeE, the dielectric constant is

ε = 1 + χe

= 1− Ne2

mωε0

∑
i

fi
ω ∓ ωB

At high frequency, this becomes

ε = 1− Ne2

mωε0

∑
i fi

ω ∓ ωB

= 1− NZe2

mωε0

1

ω ∓ ωB

= 1− ω2
P

ω (ω ∓ ωB)

where we again find the plasma frequency, ω2
p = NZe2

mε0
.

3 Wave vector
Next, we find the wave vector corresponding to this dielectric constant. With µ = µ0, we have

kc =
√
µεω

=
√
εω

= ω

√
1−

ω2
P

ω (ω ∓ ωB)

which goes imaginary whenever ω2
P

ω(ω∓ωB) > 1. The imaginary wave vector gives exponential damping of the
wave, a result of strong atomic absorption of the energy.

For the upper, positive helicity sign, first notice that when ω < ωB we have 1− ω2
P

ω(ω−ωB) = 1+
ω2

P

ω(ωB−ω) > 0

and there is no damping. When ω > ωB , the propagation is damped whenever

ω2 − ωBω − ω2
P < 0

This occurs when the frequency is below ω = 1
2

(
ωB +

√
ω2
B + 4ω2

P

)
, i.e.,

ω <
ωB
2

(
1 +

√
1 +

4ω2
P

ω2
B

)
Damping of positive helicity waves therefore occurs when the frequency satisfies

ωB < ω <
ωB
2

(
1 +

√
1 +

4ω2
P

ω2
B

)
For negative helicity waves, the condition becomes

ω2 + ωωB − ω2
P < 0

which occurs for frequencies below

ω =
1

2

(
−ωB ±

√
ω2
B + 4ω2

P

)
that is,

ω <
ωB
2

(√
1 +

4ω2
P

ω2
B

− 1

)
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4 The ionosphere
An electromagnetic pulse sent up into the ionosphere will reflect if one of these condtions is met for the
appropriate polarization. Since the plasma frequency,

ωp =

√
NZe2

mε0

varies as the square root of the number density of electrons, we can measure the electron density by timing
the round trip travel time of the pulse as a function of frequency.

Consider an experiment in which we measure the longest round trip travel time as a function of the
the frequency of some negative helicity pulses, giving T (ω). This value translates directly into altitude,
h = h (T (ω)). Inverting, we have ω (h). Now, solving for the plasma frequency, at the extremal value for
total reflection,

ω2 + ωωB − ω2
P = 0

ωP =
√
ω2 + ωωB

we have √
NZe2

mε0
=

√
ω2 + ωωB

and therefore,
N (h) =

mε0
Ze2

(
(ω (h))

2
+ ω (h)ωB

)
The resulting curves show a general increase due to increasing ionization with altitude, then an ultimate
decrease as the atmospheric density drops off. There is a great deal of structure to the curves, and they vary
from day to night and depend on solar activity.
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