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In materials, the dielectric “constant” and permeability are actually frequency dependent. This does not
affect our results for single frequency modes, but when we have a superposition of frequencies it leads to
dispersion. We begin with a simple model for this behavior. The variation of the permeability is often quite
weak, and we may take µ = µ0.

1 Frequency dependence of the permittivity

1.1 Permittivity produced by a static field
The electrostatic treatment of the dielectric constant begins with the electric dipole moment produced by
an electron in a static electric field E. The electron experiences a linear restoring force, F = −mω2

0x,

eE = mω2
0x

where ω0 characterizes the strength of the atom’s restoring potential. The resulting displacement of charge,
x = eE

mω2
0
, produces a molecular polarization

pmol = ex

=
eE

mω2
0

Then, if there are N molecules per unit volume with Z electrons per molecule, the dipole moment per unit
volume is

P = NZpmol ≡ ε0χeE

so that

ε0χe =
NZe2

mω2
0

Next, using

D = ε0E+P

εE = ε0E+ ε0χeE

the relative dielectric constant is

ε =
ε

ε0
= 1 + χe

= 1 +
NZe2

mω2
0ε0

This result changes when there is time dependence to the electric field, with the dielectric constant
showing frequency dependence.
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1.2 Permittivity in the presence of an oscillating electric field
Suppose the material is sufficiently diffuse that the applied electric field is about equal to the electric field at
each atom, and that the response of the atomic electrons may be modeled as harmonic. Again let x represent
the displacement of the charge from equilibrium, and include damping, so that now we have

m
[
ẍ+ γẋ+ ω2

0x
]
= −eE (x, t)

In addition to the linear response of the atom, we assume negligible magnetic effects and low-amplitude
oscillations. The model is still enough to give important general features.

Let the electric field vary harmonically,

E = E (x) e−iωt

then the position of the electron will have the same time dependence, x (t) = xe−iωt, so

m
[
−ω2 − iωγ + ω2

0

]
x = −eE (x)

and the electric dipole moment is

p = −ex

=
e2E

m (ω2
0 − ω2 − iωγ)

Let there be N molecules per unit volume with Z electrons per molecule, with a fraction fi of the
electrons having binding frequency ωi0 and damping γi. This is reasonable since the different electrons in
each molcule are bound differently to the nucleus. The total of all the fi should be the total number of
electrons,

∑
i fi = Z. The dipole moment for each molecule is then

pmol =
∑
i

fie
2

m (ω2
i0 − ω2 − iωγi)

E

Then, since the total dipole moment per unit volume is P = Npmol = ε0χeE, we have∑
i

Nfie
2

m (ω2
i0 − ω2 − iωγi)

E = ε0χeE

Now, using D = εE = ε0E+P = ε0E+ ε0χeE, the relative dielectric constant is

ε =
ε

ε0
= 1 + χe

= 1 +
N

ε0

∑ fie
2

m (ω2
i0 − ω2 − iωγi)

= 1 +
Ne2

ε0m

∑ fi
ω2
i0 − ω2 − iωγi

This expression is accurate if fi, ωi0 and γi are found quantum mechanically.

1.3 Anomolous dispersion and resonant absorption
The frequency dependence of the dielectric constant has certain regular properties. Separating real and
imaginary parts,

ε = 1 +
Ne2

mε0

∑ fi
ω2
i0 − ω2 − iωγi

= 1 +
Ne2

mε0

∑ fi
(
ω2
i0 − ω2 + iωγi

)
(ω2
i0 − ω2)

2
+ ω2γ2i
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we have

Re ε = 1 +
Ne2

mε0

∑ fi
(
ω2
i0 − ω2

)
(ω2
i0 − ω2)

2
+ ω2γ2i

Im ε =
Ne2ω

mε0

∑ fiγi

(ω2
i0 − ω2)

2
+ ω2γ2i

and we note that the damping constant γi is usually small. At low frequencies,

ω < ωi0

for all i, so each term in the real part of ε is positive and ε > 1. As the frequency increases, more and more
of the terms become negative, until at high frequency,

Re ε = 1− Ne2

mε0

∑ fi
∣∣ω2 − ω2

i0

∣∣
(ω2
i0 − ω2)

2
+ ω2γ2i

and ε < 1.
The real and imaginary parts of ε have peaks whenever ω is near one of the resonant frequencies, ωi0, of

the molecule. At these frequencies, the corresponding term of the denominator becomes(
ω2
i0 − ω2

)2
+ ω2γ2i → ω2γ2i

which is very small (but larger the higher the driving frequency). Since the resonant real part is changing
sign, the peak is double, spiking positive for ω < ωi0 and then spiking negative once ω > ωi0. At the same
time, the imaginary part of ε also has a peak, causing the material to absorb energy from the field. Clearly,
the damping γi plays an important role, governing the magnitude of the resonances. These effects are easily
seen from the wave vector k.

Suppose we have a plane wave travelling in the z direction, E = Eei(kz−ωt), which passes near a resonant
atom. Then setting µ ≈ 1,

k = ω
√
µε

= ω
√
Re ε+ iIm ε

We need the real and imaginary parts of k, so set

k ≡ β +
1

2
iα

The factor of 1
2 is helpful below. We have

β +
1

2
iα = ω

√
Re ε+ iIm ε

β2 + iαβ − 1

4
α2 = ω2 (Re ε+ iIm ε)

so that

β2 − 1

4
α2 = ω2Re ε

αβ = ω2Im ε

and the electric field is given by

E = Eei(kz−ωt)

= Ee− 1
2αzei(βz−ωt)
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The intensity of the wave, which varies as E2 then falls off as

e−αz

and α is called the attenuation constant. We see that the attenuation is larger near each resonant frequency,
ωi0, where we expect the radiation to be exciting the electrons of the molecule. Relating this back to the
resonance behavior, with α� β,

β2 ≈ β2 − 1

4
α2 = ω2Re ε

α =
ω2

β
Im ε

≈ ω√
Re ε

Im ε

Suppose, for simplicity, we have only a single resonance. Then with ω ≈ ω0

Re ε = 1 +
Ne2

mε0

ω2
0 − ω2

(ω2
0 − ω2)

2
+ ω2γ2

≈ 1

Im ε =
Ne2ω

mε0

γ

(ω2
0 − ω2)

2
+ ω2γ2

≈ Ne2

mε0ωγ

so the attenuation constant is approximately

α =
Ne2

mε0γ

2 Low frequencies: conductivity
In a conductor there are free electrons. Since these have no restoring force, they may be thought of as having
a resonance frequency of zero. This makes the response of conductors at low frequency very different from
that of insulators.

For insulators, the lowest resonant frequency is ω10 > 0 and the equations above give a good approxima-
tion to the actual response.

For conductors, there is a very strong response at zero frequency. By including a zero frequency mode
in the dielectric constant, we can derive Ohm’s law, J = σE, as an effect of the resulting imaginary part of
the dielectric constant.

Separate out the fraction of free electrons, f0, in our expression for the relative dielectric constant,

ε = 1 +
Ne2

mε0

n∑
i=0

fi
ω2
i0 − ω2 − iωγi

= 1 +
Ne2

mε0

f0
−ω2 − iωγ0

+
Ne2

mε0

n∑
i=1

fi
ω2
i0 − ω2 − iωγi

= εb + i
Ne2f0

mε0ω (γ0 − iω)

where we define the background dielectric constant, εb ≡ 1+Ne2

mε0

∑n
i=1

fi
ω2

i0
−ω2−iωγi . To see what is happening

in terms of conduction, consider the Maxwell equation involving current,

∇×H− ∂D

∂t
= J
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Applying this for harmonic fields and a real dielectric constant, εb, and no current gives

1

ε0
∇×H− ∂ (εbE)

∂t
= 0

i

µε0
k×H+ iωεbE = 0

Now include the zero mode of the dielectric constant,

1

ε0
∇×H− ∂ (εE)

∂t
= 0

i

µε0
k×H+ iω

(
εb + i

Ne2f0
mε0ω (γ0 − iω)

)
E = 0

or, defining the conductivity as

σ ≡ Ne2f0
mε0 (γ0 − iω)

we have
i

µε0
k×H+ iωεbE = σE

Comparing this to the full harmonic form of Ampère’s law,

i

µε0
k×H+ iωεbE = J

we have derived the form of Ohm’s law,
J = σE

where σ is no longer a phenomenological constant, but arises from zero modes of the material.
Our expression for the conductivity,

σ =
Ne2f0

m (γ0 − iω)

was first produced by Drude in 1900. It requires substantial correction because the free electrons actually
form a Fermi gas.

3 High frequencies: The plasma frequency
Now we expand our expression for the dielectric constant for ω � ωi0 for all i. The denominator is approx-
imately ω2

i0 − ω2 − iωγi ≈ −ω2 for all modes and we have

ε = 1 +
Ne2

mε0

∑ fi
ω2
i0 − ω2 − iωγi

≈ 1− Ne2

mω2ε0

∑
fi

Replacing the sum over fractions by the atomic number,
∑
fi = Z,

ε = 1− NZe2

mω2ε0

= 1−
ω2
p

ω2
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where

ωp ≡

√
NZe2

mε0

is called the plasma frequency. The plasma frequency depends only on NZ, the total number of electrons in
the system. Combining with the wave number k, we have

k =
√
µε
ω

c

k2 =
1

c2
ω2ε

=
ω2

c2

(
1−

ω2
p

ω2

)

so that

ω2 = k2c2 + ω2
p

This provides a dispersion relation, ω (k), for plasmas. We will explore more about dispersion relations soon.

3.1 Example: Water
Jackson has collected all available data (to the date of first publication, anyway) on the index of refraction
and attenuation coefficient of water as functions of frequency. The graphs on page 315 are fascinating! Take
some time to digest what is going on. The window in the visible range is particularly interesting.
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