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1 The Laplacian of 1
r and the Dirac delta function

Consider the potential of an isolated point charge q at x′

Φ =
q

4πε0

1

|x− x′|

For convenience, choose coordinates so that x′ is at the origin. Then in spherical coordinates, the potential
is proportional to 1

r . As a function, f = 1
r is defined on the open interval (0,∞), but not at the origin. Its

Laplacian is also defined on this interval, and is quickly seen to vanish everywhere,

∇2

(
1

r

)
=

1

r2
d

dr

(
r2
d

dr

(
1

r

))
=

1

r2
d

dr
(−1)

= 0

This leads to a difficulty when we consider the divergence theorem, for which the volume integral includes
the origin ˆ

V

∇2

(
1

r

)
d3x =

˛

S

n̂·∇
(

1

r

)
d2x

since the right hand side is well-defined but the left is not. Indeed, for a sphere Sε, of radius ε, the integral
on the right becomes

˛

Sε

n̂·∇
(

1

r

)
d2x =

π̂

0

2πˆ

0

r̂·
(
−r̂ 1

ε2

)
ε2 sin θdθdϕ

= −4π

However, the integral on the left is undefined.
The rigorous way to handle this is to extend the function f = 1

r to a distribution. A distribution is
defined as the limit of a sequence of functions, giving an object which is only meaningful when integrated.
Thus, if we define a distribution f to be the limit

f (x) ≡ lim
a→0

fa (x)

where fa (x) is a collection of functions depending on a parameter a. A distribution is often called a
functional, and we use the two terms interchangeably.

The integral of the distribution is defined as the limit of the well-behaved integrals of the series of
functions
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ˆ
f (x) dx ≡ lim

a→0

ˆ
fa (x) dx

and this may be perfectly finite even if f (x) is not a true function.
With this in mind, let fa (x) = 1√

r2+a2
. This is defined for the closed interval r ∈ [0,∞], and so is its

Laplacian

∇2

(
1√

r2 + a2

)
=

1

r2
d

dr

(
r2
d

dr

1√
r2 + a2

)
=

1

r2
d

dr

(
−1

2
r2

2r

(r2 + a2)
3/2

)

= − 1

r2
d

dr

(
r3

(r2 + a2)
3/2

)

= − 1

r2

(
3r2

(r2 + a2)
3/2
− 3

2

2r4

(r2 + a2)
5/2

)

= − 3

(r2 + a2)
3/2

+
3r2

(r2 + a2)
5/2

=
3r2

(r2 + a2)
5/2
−

3
(
r2 + a2

)
(r2 + a2)

5/2

= − 3a2

(r2 + a2)
5/2

We may therefore define a distribution to extend δ (x) = ∇2
(
1
r

)
by

δ (x) = lim
a→0

fa (x)

= lim
a→0

(
− 3a2

(r2 + a2)
5/2

)
The integral is now well-defined:

ˆ

V

∇2

(
1

r

)
d3x ≡ lim

a→0

ˆ

V

∇2

(
1√

r2 + a2

)
d3x

= −12π lim
a→0

a2
εˆ

0

r2dr

(r2 + a2)
5/2

= −4π lim
a→0

εˆ

0

d

dr

r3

(r2 + a2)
3/2

dr

= − lim
a→0

4πε3

(ε2 + a2)
3/2

= −4π

for any finite ε. As a pleasant bonus, the divergence theorem is now satisfied as long as we understand
∇2
(
1
r

)
to be a distribution.
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Notice that the functional δ (r) diverges at r = 0 and vanishes for all r > 0, while its integral is finite.
Furthermore, if f (r) is any smooth, bounded function of r whih vanishes outside some compact set, then
ˆ

V

f (r)∇2

(
1

r

)
d3x = lim

a→0

ˆ

V

f (r)∇2

(
1√

r2 + a2

)
d3x

= −4πf (0) lim
a→0

εˆ

0

d

dr

r3

(r2 + a2)
3/2

dr − 4π lim
a→0

εˆ

0

r
df

dr

d

dr

r3

(r2 + a2)
3/2

dr + . . .

= −4πf (0)− 4πR

where the remainder R satisfies

R = lim
a→0

εˆ

0

r
df

dr

d

dr

r3

(r2 + a2)
3/2

dr + . . .

< εf ′ (0) lim
a→0

εˆ

0

d

dr

r3

(r2 + a2)
3/2

dr + . . .

which vanishes as ε→ 0, leaving ˆ

V

f (r)∇2

(
1

r

)
d3x = −4πf (0)

This means that ∇2
(
1
r

)
= ∇2

(
1
|x|

)
is proportional to a Dirac delta function(al) at the origin,

∇2

(
1

|x|

)
= −4πδ3 (x)

Returning to an arbitrary origin, we may write this as

∇2

(
1

|x− x′|

)
= −4πδ3 (x− x′)

Notice that what is universally referred to as the Dirac delta function is, properly speaking, a functional.

2 General solution for the potential of a point charge with boundary
conditions

In terms of the potential, Gauss’s law in free space is

∇2Φ = − 1

ε0
ρ (x)

The charge density for an isolated charge q at position x′ is

ρ (x) = qδ3 (x− x′)

We wish to solve for the potential Φ for this point source, and boundary conditions given on some surface,
S. The boundary may be comprised of multiple pieces.

From the preceding section, we see that the solution for the potential is

Φ (x) =
1

4πε0

q

|x− x′|
+ Φ0
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where Φ0 is any solution to the Laplace equation,

∇2Φ0 = 0

Now, we know that the solution to the Laplace equation is unique once we specify boundary conditions,
and a formal proof of this will be given below. Suppose we have boundary conditions Φ (xS) = Φ (x)|S for
any point xS on S. Then if we require

Φ0 (xS) = Φ (xS)− 1

4πε0

q

|xS − x′|

there is a unique solution for Φ0, and therefore a unique solution for Φ satisfying the given boundary
conditions.

Alternatively, we may find the solution directly by solving

∇2Φ = − q

4πε0
δ3 (x− x′)

with boundary conditions Φ0 (xS). This is more straightforward than it appears, because the Dirac delta
function vanishes almost everywhere. Therefore, unless x = x′, we are solving the Laplace equation. As a
result, we may construct our solution for Φ from solutions to the corresponding Laplace equation.

2.1 Example: Isolated point charge
The simplest example is for an isolated point charge, with the potential vanishing at infinity. We have
already shown that

∇2 1

|x− x′|
= −4πδ3 (x− x′)

so we immediately have

Φ (x,x′) =
1

4πε0

1

|x− x′|
+ F (x)

where F satisfies the Laplace equation, ∇2F = 0. By uniqueness, the function F must be determined by the
boundary conditions. In the present case, we ask for Φ (x,x′) to vanish at x → ∞. Since the first term in
Φ (x,x′) already satisfies this, we require the same condition for F :

∇2F = 0

F (∞) = 0

The argument of the preceeding section shows that F (x) = 0 is the unique solution to this, so the Green
function for an isolated point charge is G (x,x′) = 1

|x−x′| .
If we have a localized distribution of charge, ρ (x′), in empty space, the potential vanishes at infinity and

we can use this Green function to find the potential everywhere by integrating

Φ (x) =
1

4πε0

ˆ
G (x,x′) ρ (x′) d3x′

=
1

ε0

ˆ
ρ (x′)

|x− x′|
d3x′

2.2 Example: Boundary conditions on a square
2.2.1 The Laplace equation

Consider a 2-dimensional example, with boundary conditions given on a square of side L with one corner
at the origin. Let the boundary at x = L have potential V0, with the remaining boundary segments having
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Φ = 0. Then with the single charge q at x′ = (x′, y′), the Poisson equation becomes(
∂2

∂x2
+

∂2

∂y2

)
Φ = − q

4πε0
δ (x− x′) δ (y − y′)

We begin by solving the homogeneous Laplace equation,(
∂2

∂x2
+

∂2

∂y2

)
Φ = 0

by separating in Cartesian coordinates. Writing Φ = X (x)Y (y), then dividing by Φ, the Laplace equation
is

1

XY

(
∂2

∂x2
+

∂2

∂y2

)
XY = 0

1

X

d2X

dx2
+

1

Y

d2Y

dy2
= 0

Since the first term depends only on x and the second only on y, each must be constant, so

1

X

d2X

dx2
=

1

Y

d2Y

dy2
= α2

with the immediate solutions

Xα (x) = Aα sinhαx+ Cα coshαx

Yα (y) = Bα sinαy +Dα cosαy

These functions will satisfy the boundary conditions for y and at x = 0 if we set α = πn
L and Cα = Dα = 0,

leaving

Xα (x) = Aα sinh
nπx

L

Yα (y) = Bα sin
nπy

L

Combining coefficients, the general solution is then a sum

Φ (x, y) =
∑
n

An sinh
nπx

L
sin

nπy

L

The remaining boundary condition at x = L is found by setting

V0 = Φ (L, y) =
∑
n

An sinhnπ sin
nπy

L

This is just a Fourier series for a constant. Multiplying by sin mπy
L and integrating,

V0

L̂

0

dy sin
mπy

L
= Φ (L, y) =

∑
n

An sinhnπ

L̂

0

dy sin
nπy

L
sin

mπy

L

−LV0
mπ

(cosmπ − 1) =
∑
n

An
L

2
δmn sinhnπ

LV0
mπ

(1− (−1)
m

) = Am
L

2
sinhmπ

so that
Am =

2V0
mπ sinhmπ

(1− (−1)
m

)

and finally

Φ (x, y) =
∑
n odd

4V0
nπ sinhnπ

sinh
nπx

L
sin

nπy

L
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2.2.2 Fourier representation of the Dirac delta function

Noting that the y-dependence is described by a sine series, we make use of the fact that the Dirac delta
functional may also be written as a Fourier series,

δ (y − y′) =
∑
n

An sin
nπy

L

To find the An, multiply by sin mπy
L and integrate to find the coefficients,

L̂

0

dyδ (y − y′) sin
mπy

L
=

L̂

0

dy
∑
n

An sin
nπy

L
sin

mπy

L

sin
mπy′

L
=

∑
n

Anδmn

L̂

0

dy sin2 nπy

L

=
∑
n

An
1

2
δmn

L̂

0

dy
(

sin2 nπy

L
+ 1− cos2

nπy

L

)

=
1

2

∑
n

Anδmn

L̂

0

dy

(
1− cos

2nπy

L

)

=
1

2

∑
n

AnδmnL

=
L

2
Am

so that Am = 2
L sin mπy′

L and we have

δ (y − y′) =
2

L

∑
n

sin
nπy′

L
sin

nπy

L
(1)

Integrating twice shows that

d2

dy2

(
− 2

L

∑
n

L2

n2π2
sin

nπy′

L
sin

nπy

L

)
= δ (y − y′)

2.2.3 An ansatz for a particular solution

While there are systematic approaches to solving the point particle Poisson equation in various coordinate
systems, we take a simpler approach here.

Suppose we guess that we can find a solution of the form

Φp (x, y) = −2L

π2

∑
n

1

n2
fn (x) sin

nπy′

L
sin

nπy

L
(2)

and substitute eqs.(1) and (2) into the Poisson equation(
∂2

∂x2
+

∂2

∂y2

)
Φ = − q

4πε0
δ (x− x′) δ (y − y′)

∑
n

(
−L

2

π2

1

n2
d2fn (x)

dx2
+ fn (x)

)
2

L
sin

nπy′

L
sin

nπy

L
= − q

4πε0
δ (x− x′) 2

L

∑
n

sin
nπy′

L
sin

nπy

L
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and therefore, equating like terms,

− L2

n2π2

d2fn
dx2

+ fn = − q

4πε0
δ (x− x′)

Now expand fn and the second delta function,

fn (x) =
2

L

∑
m

Bm sin
mπx

L

δ (x− x′) =
2

L

∑
m

sin
mπx′

L
sin

mπx

L

and substitute,

L2

n2π2

2

L

∑
m

Bm
m2π2

L2
sin

mπx

L
+

2

L

∑
m

Bm sin
mπx

L
= − q

4πε0

2

L

∑
m

sin
mπx′

L
sin

mπx

L(
1 +

m2

n2

)
Bm = − q

4πε0
sin

mπx′

L

Bm = − q

4πε0

n2

n2 +m2
sin

mπx′

L

Therefore,

Φp (x, y) =
q

π3ε0

∑
m,n

1

n2 +m2
sin

mπx′

L
sin

mπx

L
sin

nπy′

L
sin

nπy

L

Finally, check that(
∂2

∂x2
+

∂2

∂y2

)
Φp (x, y) = − q

π3ε0

∑
m,n

1

n2 +m2

(
m2π2

L2
+
n2π2

L2

)
sin

mπx′

L
sin

mπx

L
sin

nπy′

L
sin

nπy

L

= − q

π3ε0

π2

L2

∑
m

sin
mπx′

L
sin

mπx

L

∑
n

sin
nπy′

L
sin

nπy

L

= − q

4πε0
δ (x− x′) δ (y − y′)

2.2.4 Boundary conditions

The potential Φp (x, y) is a particular solution to our Poissoin equation, but it does not satisfy the boundary
condition at x = L, instead vanishing at all four boundary lines. To get the complete solution, we need to
add the homogeneous solution that satisfies the boundary conditions. The full solution is therefore

Φ (x, y) =
q

π3ε0

∑
m,n

1

n2 +m2
sin

mπx′

L
sin

mπx

L
sin

nπy′

L
sin

nπy

L
+
∑
n odd

4V0
nπ sinhnπ

sinh
nπx

L
sin

nπy

L

3 Superposition
The general problem of electrostatics is to solve the Poission equation,

∇2Φ = − 1

ε0
ρ (x)
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with given charge density ρ (x) and boundary conditions Φ (x)|S . Knowing the solution for a point charge
at x′ allows us to do this immediately by taking the superposition of infinitesimal charges ρ (x′) d3x′ and
summing (integrating) over our entire volume:

Φ (x) =
1

4πε0

ˆ

V

ρ (x′) d3x′

|x− x′|
+ Φ0 (x)

where Φ0 satisfies the Laplace equation. We choose Φ0 so that Φ satisfies the boundary condition. We will
examine details of this solution in the next Note.
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