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1 Electrostatics

1.1 Coulomb’s law and the electric field
Starting from Coulomb’s law for the force produced by a charge Q at the origin on a charge q at x,

F (x) =
qQ

4πε0 |x|2
x̂

where x̂ is a unit vector pointing from Q toward q. We may generalize this to let the source charge Q be
at an arbitrary postion x′ by writing the distance between the charges as |x− x′| and the unit vector from
Qto q as

x− x′

|x− x′|
Then Coulomb’s law becomes

F (x) =
qQ

4πε0

x− x′

|x− xi|2
x− x′

|x− x′|

Define the electric field as the force per unit charge at any given position,

E (x) ≡ F (x)

q

=
Q

4πε0

x− x′

|x− x′|3

We think of the electric field as existing at each point in space, so that any charge q placed at x experiences
a force qE (x).

Since Coulomb’s law is linear in the charges, the electric field for multiple charges is just the sum of the
fields from each,

E (x) =

n∑
i=1

qi
4πε0

x− xi

|x− xi|3

Knowing the electric field is equivalent to knowing Coulomb’s law.
To formulate the equivalent of Coulomb’s law for a continuous distribution of charge, we introduce the

charge density, ρ (x). We can define this as the total charge per unit volume for a volume centered at the
position x, in the limit as the volume becomes “small”. What we mean by small is any size much smaller
than the size over which ρ is changing, but large enough that the volume still contains many charges.

ρ (x) = lim
∆V→small

Qin∆V aboutx

∆V
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Then, in a volume ∆V , the total charge is ρ (x) ∆V . The continuous idealization is good enough that we
may write this infinitesimally,

dQ = ρ (x) d3x

With this preparation, we reconsider the electric field, replacing qi with ρd3x. Let qi be replaced by
qi = q (xi) = ρ (xi) ∆V and take the infinitesimal limit as ∆V → 0 and n→∞,

E (x) = lim
∆V→0

n∑
i=1

ρ (xi) ∆Vi
4πε0

x− xi

|x− xi|3

In this limit, the sum becomes an integral, as the charge positions xi → x′ vary smoothly over all space,

E (x) =
1

4πε0

ˆ
ρ (x′)

x− x′

|x− x′|3
d3x′

1.2 The electric flux
It is useful to compute the electric flux over an arbitrary closed surface, S,˛

S

E · n̂ d2x

where n̂ is the unit outward normal to S. This is easiest to find for a single charge, then use superposition
to get the general expression. For a point charge at the origin,˛

S

E · n̂ d2x =

˛

S

Q

4πε0r2
r̂ · n̂ d2x

Approximate the surface S by small pieces with normals either parallel or perpendicular to the radial unit
vector r̂. Sections orthogonal to r̂ give no conntribution, while the pieces of spherical surfaces with normals
parallel to r̂ have

r̂ · n̂ d2x = r̂ · r̂ r2dΩ

= r2 sin θdθdϕ

where dΩ = sin θdθdϕ is an elemental solid angle on a sphere. The flux then becomes˛

S

E · n̂ d2x =
Q

4πε0

˛

S

sin θdθdϕ

The integral is now just the area, 4π, of a unit sphere and we have Gauss’s law for a single charge,˛

S

E · n̂ d2x =
Q

ε0

Since the surface is arbitrary and the law is linear, we may add together the contributions of many charges
to get ˛

S

E · n̂ d2x =
Qenclosed

ε0

where Qenclosed is the total charge inside S. This is Gauss’s law.
In the continuum limit, the enclosed charge satisfies

Qenclosed =

ˆ
ρ (x) d3x
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1.3 Line integral of the electric field
Again consider the electric field of a point charge at the origin,

E =
1

4πε0

Q

r2
r̂

Consider the integral of E · dl along an arbitrary curve, C,
ˆ

C

E · dl =
Q

4πε0

ˆ

C

1

r2
r̂ · dl

=
Q

4πε0

rfˆ

ri

1

r2
dr

=
Q

4πε0

(
− 1

rf
+

1

ri

)
where ri and rf are the initial and final radii of the curve.

Now suppose the curve is a closed loop. Then ri = rf and the integral vanishes, regardless of the closed
curve, C, ˛

C

E · dl =
Q

4πε0

˛

C

1

r2
dr = 0

Notice that this result depends only on the relative position of the curve and the charge, not on the charge
being at the origin.

Now, suppose there is more than one charge. Since the electric field E is the sum of the fields from each
charge, Ei, and the line integral for each vanishes, the sum vanishes,

˛

C

E · dl =

n∑
i=1

˛

C

Ei · dl = 0

as long as the curve doesn’t pass through any of the charges. The result holds equally well in the limit of a
charge density, and we conclude that ˛

C

E · dl = 0

for any curve C in empty space.

1.4 The integral and differential forms of the laws
We now have the integral form of the Maxwell equations for electrostatics:

˛

S

E · n̂ d2x =
Qenclosed

ε0
˛

C

E · dl = 0

These may be used to find the electric field when the charge distribution is sufficiently symmetrical, but are
of little help for general charge distributions. A much more powerful formulation is to recast these equations
as equivalent differential equations.
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1.4.1 The divergence of the electric field

Starting from the integral form of Gauss’s law, we treat the charge as a continuous distribution, ρ (x). Then,
letting V be the volume enclosed by the arbitrary closed surface S, and substituting the integral for Qenclosed,˛

S

E · n̂ d2x =
1

ε0

ˆ

V

ρ (x) d3x

Applying the divergence theorem to the left side this becomesˆ

V

∇ ·E d3x =
1

ε0

ˆ

V

ρ (x) d3x

Combining the integrals, we have ˆ

V

[
∇ ·E− ρ (x)

ε0

]
d3x = 0

where V is an arbitrary volume.
We now prove by contradiction that the integrand must be zero everywhere in V . Suppose there is some

point P in V where ∇ · E− ρ(x)
ε0

> 0. Then, since we expect ∇ · E− ρ(x)
ε0

to be continuous, there must be
a region around P over which ∇ ·E− ρ(x)

ε0
remains positive. Take the arbitrary volume V to be within this

region. Then the integral is necessarily positive, and we have a contradition. A similar argument holds if
∇ · E − ρ(x)

ε0
< 0, so we must have ∇ · E − ρ(x)

ε0
= 0 at P. Since this argument holds for any point in the

region, the integrand must vanish everywhere, and we have

∇ ·E =
1

ε0
ρ (x)

This is the differential form of Gauss’s law. It will be extremely useful once we also know about the curl of
E.

1.4.2 The curl of the electric field

Now apply Stokes’ theorem to the line integral. We have

0 =

˛

C

E · dl

=

¨

S

(∇×E) · n d2x

where S is now an arbitrary surface with boundary C. An argument similar to the one above shows that
this can only be the case for all surfaces if the integrand vanishes. Moreover, since n is arbitrary as well, we
have

∇×E = 0

in free space for the electric field of any static charge distribution.

1.5 The electric potential
The vanishing of closed line integrals of the electric field,

¸
C
E · dl = 0, (or equivalently, the vanishing curl

of E, since Stokes’ theorem makes these statements equivalent), means that we may define a function from
the integral of the electric field along curves,

Φ (x) = −
x̂

x0

E · dl
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This integral is independent of our choice of the path of integration, and therefore depends only on the
endpoint x. To see this, subtract the integral along any two curves between the same endpoints,

ΦC1
(x)− ΦC2

(x) = −
x̂

x0,C1

E · dl +

x̂

x0,C2

E · dl

Since integrating along C1 from x0 to x just gives the negative of the integral along −C1 from x to x0, we
may combine the two integrals on the right into a single closed line integral, which then vanishes:

−
x̂

x0,C1

E · dl +

x̂

x0,C2

E · dl =

˛

C2−C1

E · dl = 0

Therefore, ΦC1
= ΦC2

for any two paths between the same endpoints, and Φ (x) is a function – its value
depends only on x and not on the curve of integration.

V (x) is called the electric potential. From it, we may find the electric field by taking the gradient,

E = −∇V (x) (1)

1.5.1 An alternative proof

An alternative proof, which gives an explicit formula for the potential, follows from the gradient of 1
|x−x′| ,

∇ 1

|x− x′|
=

(
î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

)
1√

(x− x′)2
+ (y − y′)2

+ (z − z′)2

= −1

2

1[
(x− x′)2

+ (y − y′)2
+ (z − z′)2

]3/2 (î ∂∂x + ĵ
∂

∂y
+ k̂

∂

∂z

)[
(x− x′)2

+ (y − y′)2
+ (z − z′)2

]

= −1

2

1[
(x− x′)2

+ (y − y′)2
+ (z − z′)2

]3/2 [2 (x− x′) î + 2 (y − y′) ĵ + 2 (z − z′) k̂
]

= − 1[
(x− x′)2

+ (y − y′)2
+ (z − z′)2

]3/2 [(x− x′) î + (y − y′) ĵ + (z − z′) k̂
]

= − x− x′

|x− x′|3

Using this, we may immediately write the electric field of a charge distribution as

E (x) =
1

4πε0

ˆ
ρ (x′)

x− x′

|x− x′|3
d3x′

=
1

4πε0

ˆ
ρ (x′)

(
−∇ 1i
|x− xi|

)
d3x′

Since the gradient involves derivatives with respect to x while the integral is over x′, we may interchange
the integral and gradient. Then

E (x) = −∇Φ

where

Φ (x) =
1

4πε0

ˆ

V

ρ (x′) d3x′

|x− x′|

This scalar integration is generally easier than the vector integration for finding the electric field directly.
Once we have the potential, we easily find the electric field by differentiating.
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2 Maxwell’s equations for electrostatics
While the curl of E maybe be different from zero in the presence of a changing magnetic field, Maxwell’s
equations for electrostatics reduce to

∇ ·E =
1

ε0
ρ (x)

∇×E = 0 (2)

The Helmholz theorem tells us that knowing the divergence and curl of a vector field, together with boundary
conditions, uniquely determines the field everywhere within the boundary. These equations therefore give a
complete characterization of the electric field once we specify the charge density ρ (x) in a volume V , and
give boundary conditions on the boundary of V .

As we have seen above, the vanishing curl of E implies the existence of a potential. Furthermore, we may
write the electrostatic equations in terms of the potential, eq.(1). Substituting this into the electrostatic
equations, the curl of the gradient vanishes automatically, while Gauss’s law becomes

∇2Φ = − 1

ε0
ρ (x) (3)

This is the Poisson equation. Together with boundary conditions, this is gives a unique solution for the
potential, which then determines the electric field. We will devote considerable attention to solving the
Poisson equation.The electric field is then found from E = −∇Φ (x).

3 Magnetostatics
The force on charge q moving with velocity v in a magnetic field B is given by

F = qv ×B

It is also moving charges which produce magnetic fields. To quantify this, we first need to characterize
moving charge distributions. It is most useful to treat the current as a current density vector J rather than
a simple current scalar, I, since the current may vary in both direction and magnitude from place to place.
The current density captures both of these features.

3.1 Current density
A current I may be viewed as made up of many charges in a (microscopically large, macroscopically small)
region d3x moving with velocity v (x). If the density of charges at x is ρ (x), then there is a current density,
J = ρv. Let d2x be an arbitrary surface element with unit normal n̂. Then the component of the current
density crossing this surface is J · n̂; this is the amount of charge per unit time per unit area crossing d2x,
so the charge per unit time crossing the surface is the product with the area,

dI =
dq

dt

∣∣∣∣
through d2x

= J · n̂d2x

Integrating over an arbitrary surface S, we get the total current

I =

¨

S

J · n̂d2x

Now suppose we have a region of space with charge density ρ. Let some or all of this charge move as
a current density, J. Now, since we find that total charge is conserved, we know that the total charge in
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some volume V can only change if the current carries charge across the boundary S if V. Therefore, with
the charge in the volume V given by

Qtot =

ˆ

V

ρd3x

the time rate of change of Qtot must be given by the total flux J across the boundary. Let n̂ be the outward
normal of the boundary S of V. Then

dQtot
dt

= −
˛

S

J · n̂d2x (4)

This expresses conservation of charge.
On the left side of the conservation law, rewrite dQtot

dt by interchanging the order of integration and
differentiation ,

dQtot
dt

=
d

dt

ˆ

V

ρd3x

=

ˆ

V

∂ρ

∂t
d3x

while on the right we use the divergence theorem, −
¸
S J · n̂d

2x = −
´
V∇ · Jd

3x. Substituting both these
changes into eq.(4), we have

ˆ

V

(
∂ρ

∂t
+ ∇ · J

)
d3x = 0

Since the final equation holds for all volumes V it must hold at each point, leading us to the continuity
equation:

∂ρ

∂t
+ ∇ · J = 0 (5)

An equation of this sort holds anytime there is a conserved quantity.
We define a steady state current to be one for which ρ and J are independent of explicit time dependence,

∂ρ
∂t = 0, ∂J∂t = 0. For a steady state current, the current density has vanishing divergence, ∇ · J = 0.

3.2 The Biot-Savart law and magnetostatics
Careful measurements of the forces on moving charges shows that a charge density J produces a magnetic
field according to the Biot-Savart law.Next, we consider the effect of a current in producing a magnetic field.
The experimental results are summarized for steady state line currents by the Biot-Savart law,

B (x) =
µ0

4π

ˆ
J (x′)× (x− x′)

|x− x′|3
d3x′

The constant µ0 is the permeability of free space with the value µ0 = 4π × 10−7N/A2. There is a clear
parallel with our equation for the electric field. Instead of simply the charge density times the factor x0−x

|x0−x|3
,

we now require the cross product with the current density.
In the Notes on Ampere’s law is a calculation of the curl of B (x) directly from the Biot-Savart law. The

result is the differential form of Ampère’s law for steady currents,

∇×B = µ0J
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If we compute the flux of this equation across any surface S, the right side gives µ0 times the total current
passing through the surface. Therefore,

µ0Ienclosed = µ0

ˆ
J · n̂d2x

=

ˆ
(∇×B) · n̂d2x

Applying Stokes’ theorem gives the integral of B around the boundary C of S,

µ0Ienclosed =

˛
B · dl

This is the integral form of Ampère’s law for magnetostatics.
The converse holds as well. Given the integral form, we may reverse the steps to derive the integral form.

3.3 The divergence of the magnetic field
We now find the divergence of B. Start again with the general form of the Biot-Savart law,

B (x) =
µ0

4π

ˆ
J (x′)× (x− x′)

|x− x′|3
d3x′

and take the divergence of both sides with respect to x,

∇x ·B (x) =
µ0

4π

ˆ
∇x ·

[
J (x′)× (x− x′)

|x− x′|3

]
d3x′

= −µ0

4π

ˆ
∇x ·

[
J (x′)×∇x

1

|x− x′|

]
d3x′

Now we need to rearrange terms. The divergence of a cross product may be rewritten as

∇ · (A×B) = B · (∇×A)−A · (∇×B)

so we may rewrite the integrand as

∇x ·
[
J (x′)×∇x

1

|x− x′|

]
= −∇x

1

|x− x′|
[∇x × J (x′)] + J (x′) ·

[
∇x ×∇x

1

|x− x′|

]
= 0

where the first term on the right containing ∇x×J (x′) vanishes immediately because J (x′) does not depend
on the observation point x. The second term also vanishes because the curl of a gradient is zero. Therefore,
the divergence of the magnetic field vanishes:

∇ ·B = 0

It turns out that this law applies even in non-steady state situations.
Integrating the divergence of B and using the divergence theorem

0 =

ˆ

V

∇ ·Bd3x

=

˛

S

B · nd2x

which shows that there is no net magnetic flux across any closed surface. In particular, there are no isolated
magnetic charges (monopoles).
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4 The equations of magnetostatics
Summarizing the magnetostatic equations, we have

∇×B = µ0J (x)

∇ ·B = 0

together with the Lorentz force law,
F = q (E + v ×B)

These equations, together with boundary conditions, uniquely determine static magnetic fields.
The integral forms of the magnetostatic laws are therefore,

˛

C

B · dl = µ0IS

˛

S

B · nd2x = 0

These integral forms are useful for cases of high symmetry and for establishing the boundary conditions.

4.1 The vector potential for the magnetic field
As we found for the electric field, it simplifies calculations to write the magnetic field in terms of a potential.
However, while the electric field has vanishing curl and a source for its divergence, the magnetic field has
the opposite: a source for the curl and a vanishing divergence. Therefore, we make use of the vanishing
divergence of B to write B as a curl.

Clearly, if we set
B = ∇×A

for some vector field A, the divergence will vanish automatically because the divergence of a curl is identically
zero. Conversely, the Helmholz theorem shows that if the divergence vanishes then B may be written as a
curl of some vector. The vector field A is called the vector potential.

Writing B = ∇ ×A automatically ensures that ∇ · B = 0. We now substitute this into Ampère’s law
and use the identity for a double curl:

∇× (∇×A) = µ0J (r)

∇ (∇ ·A)−∇2A = µ0J (r)

We can eliminate the first term by using gauge freedom.
Gauge freedom arises because there is more than one allowed vector potential. If A is any vector field

satisfying B = ∇×A, and we set A′ = A + ∇f for any function f , then it is also true that B = ∇×A′.
The choice of the function f is called the gauge, and this choice has no effect on the measurable magnetic
field, must like our freedom to add a constant to a scalar potential.

To use the gauge freedom to simplify the form of Ampère’s law, first suppose we have any vector potential
A0 (x) satisfying B = ∇×A0. Furthermore, it will be the case that the divergence of A0 is some function
g (x),

∇ ·A0 = g (x)

Let A be another allowed vector potential related to A0 by

A = A0 + ∇f
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where f is a function of our choosing. We would like to choose the function f so that the divergence of the
new potential vanishes. This requires

0 = ∇ ·A
= ∇ · (A0 + ∇f)

= g +∇2f

so that f must satisfy the Poisson equation,

∇2f = −g

where g is the known divergence of our original vector potential A0. We have techniques for solving the
Poisson equation, so we can always find the required function f .

We now have a vector potential satisfying two conditions:

∇×A = B

∇ ·A = 0

Substituting into Ampère’s law now gives the simpler result,

µ0J (r) = ∇×B

= ∇× (∇×A)

= ∇ (∇ ·A)−∇2A

= −∇2A

and vanish, and Ampère’s law is

∇2A = −µ0J (r)

This is just three copies of the Poisson equation, one for each component, so in principal we know how to
solve the equations of magnetostatics.

For fields vanishing at infinity, the solution is

A (x0) =
µ0

4π

ˆ
J (x)

|x0 − x|
d3x

For other cases, we know that the solutions are unique, once we specify boundary conditions.

5 The Poisson equation
The preceding sections have shown that the electric field may be found by solving the Poisson equation,

∇2Φ = − 1

ε0
ρ (x)

for specified boundary conditions, then taking the gradient to find the field,

E (x) = −∇Φ

To find the magnetic field, we solve the vector Poisson equation,

∇2A = −µ0J (x)

then take the curl to find the magnetic field,

B = ∇×A

Therefore, magnetostatics and electrostatics both lead us to consider solutions to the Poisson equations,
including a careful treatment of boundary conditions.
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