Yukawa potential
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1 The Yukawa potential

We consider properties of the Yukawa potential,

This potential is the static, spherically symmetric solution to the Klein-Gordon equation,
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To see this, let V =V (r) and write the Laplacian in spherical coordinates. Then we have
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Differentiating on the left side, we have
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so that we may write the equation as
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and this has exponential solutions,
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Choosing the decaying exponential for our solution, we have
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where a = %, the reduced Compton wavelength of a particle of mass m.



2 Bound orbits

We know from our general results that the conserved energy and angular momentum are given by
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and from the energy expression we see that the radial motion is described by the effective potential
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Bound orbits exist if there is a minimum of the effective potential:
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This has solutions iff
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Since the right side is positive definite, there is always a value of L small enough that the equation is satisfied.
Computing the second derivative at this point, we have
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so we have a minimum provided
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This is satisfied as long as
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and always if r < a. We take r < a in the following, since it allows us to expand in powers of
guarantees that the extremum is a minimum.
Notice that to first order in Z, a1l — ~ and the circular orbits lie at approximately
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the same value as for the Newtonian potential.

3 Nearly circular orbits

Now consider the precession of nearly circular orbits in the Yukawa potential,

Vir)= —ée_ﬁ

We know from our general results that the conserved energy and angular momentum are given by
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For circular orbits, r = rq, so
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or correct to second order,
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This also gives us the frequency of the circular orbit,
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Now suppose we give the system slightly higher energy by instantaneously increasing the angular mo-
mentum by §. Then

L = wigo+9
= Lo+ )
Lo+08)? k _n
E — % _ ie_TO
2urg To
L? k g 2L¢0 + 52
- 702 e 4 072
2urg  ro 2urg
2Lo6 + 62
— EO + 072
2prg
Therefore, at general 7, p,
2L06 + 62 1, L? k _»
Eo+ ——— = —ur ——¢
0ot 2urd PLA 2ur? r°

The minimum of the potential is still given by
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Expanding about 71, so that r =ry + e withe < ry < a
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so that

This has the general form
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and this is the energy of a simple harmonic oscillator, oscillating around a point at r; with angular frequency

while the orbital frequency is

The ratio of frequencies is
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and this varies continuously with r; and is therefore generically irrational, so the orbit doesn’t close. The
oscillation frequency in r is less than the orbital frequency, so the perigee advances. The advance per orbit
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