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1 Conservation and cyclic coordinates
From the relationship between the Lagrangian and the Hamiltonian,

H = piẋi − L

we see that if a coordinate is cyclic in the Lagrangian it is also cyclic in the Hamiltonian,

∂H

∂xi
= − ∂L

∂xi

When a coordinate xi is cyclic then the corresponding Hamilton equation reads

ṗi = −∂H
∂xi

= 0

and the conjugate momentum

pi =
∂L

∂ẋi
is conserved, so the relationship between cyclic coordinates and conserved quantities still holds.

Hamilton’s equations show that we also have a corresponding statement about momentum. Suppose
some momentum, pi, is cyclic in the Hamiltonian,

∂H

∂pi
= 0

Then from Hamilton’s equations we immediately have

ẋi = 0

so that the coordinate xi is a constant of the motion.
Suppose we have a cyclic coordinate, say xn. Then the conserved momentum takes its initial value, pn0,

and the Hamiltonian is
H = H (x1, . . . xn−1; p1, . . . pn−1, pn0)

and therefore immediately becomes a function of 2 (n− 1) variables. This is simpler than the Lagrangian
case, where constancy of pn makes no immediate simplification of the Lagrangian.

Consider the time derivative of the Hamiltonian,

dH

dt
=

∂H

∂pi
ṗi +

∂H

∂qi
q̇i +

∂H

∂t

= q̇iṗi − ṗiq̇i +
∂H

∂t

=
∂H

∂t

so the Hamiltonian is conserved if it does not explicitly depend on time.

1



Example 1: As a simple example, consider the 2-dimensional Kepler problem, with Lagrangian

L =
1

2
m
(
ṙ2 + r2θ̇2

)
+
GM

r

with θ cyclic. The momenta are easily seen to be

pr = mṙ

pθ = mr2θ̇

so the Hamiltonian is

H =
p2r
2m

+
p2θ

2mr2
− GM

r

Here θ is cyclic to the conserved momentum pθ is constant.

Example 2: Let a mass, m, free to move in one direction, experience a Hooke’s law restoring force,
F = −kx. Solve Hamilton’s equations and study the motion of system in phase space. The Lagrangian for
this system is

L = T − V

=
1

2
mẋ2 − 1

2
kx2

The conjugate momentum is just

p =
∂L

∂ẋ
= mẋ

so the Hamiltonian is

H = pẋ− L

=
p2

m
− 1

2
mẋ2 +

1

2
kx2

=
p2

2m
+

1

2
kx2

=
1

2m

(
p2 +m2ω2x2

)
We may write this in terms of ξA = (x, p) as

H =
1

2m
HABξ

AξB

where
HAB =

(
1 0
0 m2ω2

)
Since ∂H

∂t = 0, E = H is a constant of the motion. We see immediately that the solution is an ellipse in
phase space, E = 1

2m

(
p2 +m2ω2x2

)
, or

1

2mE
p2 +

mω2

2E
x2 = 1

The solution with initial conditions x (0) = x0, p (0) = p0 has E = 1
2m

(
p20 +m2ω2x20

)
x =

√
2mE

m2ω2
sinλ

p =
√

2mE cosλ
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where λ is some function of time. To find λ, we look at one of Hamilton’s equations,

ẋ =
∂H

∂p

=
p

m√
2mE

m2ω2
λ̇ cosλ =

√
2mE

m
cosλ

λ̇ = ω

λ = ωt+ ϕ0

and therefore

x =

√
2mE

m2ω2
sin (ωt+ ϕ0)

p =
√

2mE cos (ωt+ ϕ0)

where
√

2mE
m2ω2 cosϕ0 = x0 and p0 =

√
2mE sinϕ0, or,

cosϕ0 =
mωx0√

2mE

sinϕ0 =
p0√
2mE

2 The symplectic form

2.1 Writing Hamilton’s equations with unified variables
In order to fully appreciate the power and uses of Hamiltonian mechanics, we develop some formal properties.
First, we write Hamilton’s equations,

ẋk =
∂H

∂pk

ṗk = − ∂H
∂xk

for k = 1, . . . , n, in a different way. Define a unified name for our 2n coordinates,

ξA = (xi, pj)

for A = 1, . . . , 2n. That is, more explicitly, for i = 1, . . . , n,

ξi = xi

ξn+i = pi

We may immediately write the left side of both of Hamilton’s equations at once as

ξ̇A = (ẋi, ṗj)

The right side of the equations involves all of the derivatives,

∂H

∂ξA
=

(
∂H

∂xi
,
∂H

∂pj

)
(1)
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but there is a difference of a minus sign between the two equations and the interchange of xi and pi. We
incorporate this by introducing a matrix called the symplectic form,

ΩAB =

(
0 1
−1 0

)
where [1]ij = δij is the n× n identity matrix. Then, using the summation convention, Hamilton’s equations
take the form of a single expression,

ξ̇A = ΩAB
∂H

∂ξB

We may check this by writing it out explicitly,(
ẋi
ṗj

)
=

(
0 δin
−δjm 0

)( ∂H
∂xm
∂H
∂pn

)

=

(
δim

∂H
∂pm

−δjn ∂H∂xn

)

=

(
∂H
∂pi

− ∂H
∂xj

)

Example: Coupled pendula For the example of two simple pendula coupled by a spring, the Hamiltonian
for small angles is

H =
1

2ml2
(
p21 + p22

)
+

1

2
kl2 (θ1 − θ2)

2
+

1

2
mgl

(
θ21 + θ22

)
and we set ξ1 = θ1, ξ2 = θ2, ξ3 = p1 and ξ4 = p2. In terms of these, the Hamiltonian may be written as a
symmetric quadratic form

H =
1

2
HABξAξB

HAB =


kl2 +mgl −kl2 0 0
−kl2 kl2 +mgl 0 0

0 0 1
ml2 0

0 0 0 1
ml2


with

∂

∂ξC
H =

1

2
HABδACξB +

1

2
HABξAδBC = HCBξB

Hamilton’s equations are then
ξ̇1
ξ̇2
ξ̇3
ξ̇4

 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0




kl2 +mgl −kl2 0 0
−kl2 kl2 +mgl 0 0

0 0 1
ml2 0

0 0 0 1
ml2




ξ1
ξ2
ξ3
ξ4



=


0 0 1

ml2 0
0 0 0 1

ml2

−kl2 −mgl kl2 0 0
kl2 −kl2 −mgl 0 0




ξ1
ξ2
ξ3
ξ4



=


1
ml2 ξ3
1
ml2 ξ4

−kl2ξ1 −mglξ1 + kl2ξ2
−kl2ξ2 −mglξ2 + kl2ξ1


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so that 
ξ̇1
ξ̇2
ξ̇3
ξ̇4

 =


1
ml2 ξ3
1
ml2 ξ4

−kl2 (ξ1 − ξ2)−mglξ1
kl2 (ξ1 − ξ2)−mglξ2


as expected.

2.2 Properties of the symplectic form
We note a number of important properties of the symplectic form. First, it is antisymmetric,

Ωt = −Ω

ΩAB = −ΩBA

and it squares to minus the 2n-dimensional identity,

Ω2 = −1(
0 1
−1 0

)(
0 1
−1 0

)
=

(
−1 0
0 −1

)
= −

(
1 0
0 1

)
We also have

Ωt = Ω−1

since Ωt = −Ω, and therefore ΩΩt = Ω (−Ω) = −Ω2 = 1. Since all components of ΩAB are constant, it is
also true that

∂AΩBC =
∂

∂ξA
ΩBC = 0

This last condition does not hold in every basis, however.
The defining properties of the symplectic form, necessary and sufficient to guarantee that it has the

properties we require for Hamiltonian mechanics are that it be a 2n × 2n matrix satisfying two properties
at each point of phase space:

1. Ω2 = −1

2. ∂AΩBC + ∂BΩCA + ∂CΩAB = 0

The first of these is enough for there to exist a change of basis so that ΩAB =

(
0 1
−1 0

)
at any given

point, while the vanishing combination of derivatives insures that this may be done at every point of phase
space.

2.3 Change of coordinates
Consider what happens to Hamilton’s equations if we want to change to a new set of phase space coordinates,
χA = χA (ξ) . Let the inverse transformation be ξA (χ) . The time derivatives become

dξA

dt
=
∂ξA

∂χB
dχB

dt

while the right side of Hamilton’s equation becomes

ΩAB
∂H

∂ξB
= ΩAB

∂χC

∂ξB
∂H

∂χC
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Equating these expressions,
∂ξA

∂χB
dχB

dt
= ΩAB

∂χD

∂ξB
∂H

∂χD

we multiply by the Jacobian matrix, ∂χ
C

∂ξA
to get

∂χC

∂ξA
∂ξA

∂χB
dχB

dt
=

∂χC

∂ξA
ΩAB

∂χD

∂ξB
∂H

∂χD

δCB
dχB

dt
=

∂χC

∂ξA
ΩAB

∂χD

∂ξB
∂H

∂χD

and finally
dχC

dt
=
∂χC

∂ξA
ΩAB

∂χD

∂ξB
∂H

∂χD

Defining the symplectic form in the new coordinate system,

Ω̃CD ≡ ∂χC

∂ξA
ΩAB

∂χD

∂ξB

we see that Hamilton’s equations are entirely the same if the transformation leaves the symplectic form
invariant,

Ω̃CD = ΩCD

Any linear transformation MA
B leaving the symplectic form invariant,

ΩAB ≡MA
CM

B
DΩCD

is called a symplectic transformation. Coordinate transformations which are symplectic transformations at
each point are called canonical. Therefore those functions χA (ξ) satisfying

ΩCD ≡ ∂χC

∂ξA
ΩAB

∂χD

∂ξB

are canonical transformations. Canonical transformations preserve Hamilton’s equations.

2.4 Poincaré sections
The phase space description of classical systems are equivalent to the configuration space solutions and are
often easier to interpret because more information is displayed at once. The price we pay for this is the
doubled dimension – paths rapidly become difficult to plot. To offset this problem, we can use Poincaré
sections – projections of the phase space plot onto subspaces that cut across the trajectories. Sometimes the
patterns that occur on Poincaré sections show that the motion is confined to specific regions of phase space,
even when the motion never repeats itself. These techniques allow us to study systems that are chaotic,
meaning that the phase space paths through nearby points diverge rapidly. See the Wikipedia page on Chaos
Theory. For more detail, read Gleick, Chaos: Making a New Science.
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