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1 Conservation and cyclic coordinates

From the relationship between the Lagrangian and the Hamiltonian,

we see that if a coordinate is cyclic in the Lagrangian it is also cyclic in the Hamiltonian,
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When a coordinate x; is cyclic then the corresponding Hamilton equation reads
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and the conjugate momentum
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is conserved, so the relationship between cyclic coordinates and conserved quantities still holds.
Hamilton’s equations show that we also have a corresponding statement about momentum. Suppose
some momentum, p;, is cyclic in the Hamiltonian,
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Then from Hamilton’s equations we immediately have
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so that the coordinate z; is a constant of the motion.
Suppose we have a cyclic coordinate, say x,. Then the conserved momentum takes its initial value, py,y,
and the Hamiltonian is
H=H(z1,...Tn-1; P1,---Pn—1,Pno)
and therefore immediately becomes a function of 2 (n — 1) variables. This is simpler than the Lagrangian
case, where constancy of p,, makes no immediate simplification of the Lagrangian.
Consider the time derivative of the Hamiltonian,
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so the Hamiltonian is conserved if it does not explicitly depend on time.



Example 1: As a simple example, consider the 2-dimensional Kepler problem, with Lagrangian
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with 6 cyclic. The momenta are easily seen to be
Pr = mr
po = mrf
so the Hamiltonian is
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Here 6 is cyclic to the conserved momentum py is constant.

Example 2: Let a mass, m, free to move in one direction, experience a Hooke’s law restoring force,
F = —kx. Solve Hamilton’s equations and study the motion of system in phase space. The Lagrangian for
this system is
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The conjugate momentum is just
so the Hamiltonian is

2
p 1 5 1, 5
= ——= =k
m 2mx+2m
2
D 1 5
= 4k
2m+2x

p2 + m2w2$2)

. (
2m
We may write this in terms of ¢4 = (z,p) as
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Since %—f =0, F = H is a constant of the motion. We see immediately that the solution is an ellipse in
phase space, E = ﬁ (p2 + m2w2x2), or
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The solution with initial conditions z (0) = z,p (0) = po has E = 5 (p§ + m?w?z?)
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where X is some function of time. To find A, we look at one of Hamilton’s equations,

. oOH
T = —
dp
- P
m
2mE . V2mE
%/\ COSA = m cos \
w m
A w
A = wt+ g
and therefore
2mE .
r = 57 Sl (wt + ¢o)
p = V2mE cos(wt+ o)

2mE _ _ :
where /235 cos g = zo and pp = V2mE sin o, or,
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2 The symplectic form

2.1 Writing Hamilton’s equations with unified variables

In order to fully appreciate the power and uses of Hamiltonian mechanics, we develop some formal properties.

First, we write Hamilton’s equations,
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for k =1,...,n, in a different way. Define a unified name for our 2n coordinates,
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for A=1,...,2n. That is, more explicitly, for i = 1,...,n,

& =

Snti = D
We may immediately write the left side of both of Hamilton’s equations at once as
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The right side of the equations involves all of the derivatives,
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but there is a difference of a minus sign between the two equations and the interchange of x; and p;. We
incorporate this by introducing a matrix called the symplectic form,
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where [1], ;= ;5 is the n x n identity matrix. Then, using the summation convention, Hamilton’s equations

take the form of a single expression,
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We may check this by writing it out explicitly,
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Example: Coupled pendula For the example of two simple pendula coupled by a spring, the Hamiltonian
for small angles is
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and we set & = 01,& = 05,3 = p1 and &4 = po. In terms of these, the Hamiltonian may be written as a
symmetric quadratic form
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Hamilton’s equations are then
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so that
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as expected.

2.2 Properties of the symplectic form
We note a number of important properties of the symplectic form. First, it is antisymmetric,
Q= —Q
Qap = —Qpa

and it squares to minus the 2n-dimensional identity,
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We also have
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since f = —Q, and therefore QQf = Q (—Q) = —Q? = 1. Since all components of Q4 are constant, it is
also true that 5
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This last condition does not hold in every basis, however.

The defining properties of the symplectic form, necessary and sufficient to guarantee that it has the
properties we require for Hamiltonian mechanics are that it be a 2n x 2n matrix satisfying two properties
at each point of phase space:

1. 2 =-1
2. 040Bc +0BQ2ca +0cQap =0
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point, while the vanishing combination of derivatives insures that this may be done at every point of phase
space.

The first of these is enough for there to exist a change of basis so that Qg = at any given

2.3 Change of coordinates

Consider what happens to Hamilton’s equations if we want to change to a new set of phase space coordinates,
x4 = x? (€). Let the inverse transformation be ¢4 (x). The time derivatives become
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while the right side of Hamilton’s equation becomes
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Equating these expressions,
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we multiply by the Jacobian matrix, % to get
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and finally
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Defining the symplectic form in the new coordinate system,
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we see that Hamilton’s equations are entirely the same if the transformation leaves the symplectic form
invariant,

OCD _ CD
Any linear transformation M4 ; leaving the symplectic form invariant,
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is called a symplectic transformation. Coordinate transformations which are symplectic transformations at
each point are called canonical. Therefore those functions x4 (¢) satisfying
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are canonical transformations. Canonical transformations preserve Hamilton’s equations.

2.4 Poincaré sections

The phase space description of classical systems are equivalent to the configuration space solutions and are
often easier to interpret because more information is displayed at once. The price we pay for this is the
doubled dimension — paths rapidly become difficult to plot. To offset this problem, we can use Poincaré
sections — projections of the phase space plot onto subspaces that cut across the trajectories. Sometimes the
patterns that occur on Poincaré sections show that the motion is confined to specific regions of phase space,
even when the motion never repeats itself. These techniques allow us to study systems that are chaotic,
meaning that the phase space paths through nearby points diverge rapidly. See the Wikipedia page on Chaos
Theory. For more detail, read Gleick, Chaos: Making a New Science.



