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General formalism
Unbounded orbits are typically encountered in scattering experiments. A beam of particles is directed at
a target, and the resulting interactions of the beam with the target particles scatters the beam particles in
all directions, with a probability that depends on the forces. The target particles may be molecules, atoms,
nuclei, or other fundamental particles, and the beam is generally electrons, protons or heavy nuclei.

The variable measured is called the differential cross-section, dσ, defined as

dσ =
dσ

dΩ
dΩ =

number of particles scattered into solid angle dΩ per unit time

incident intensity (particles per unit area per unit time)

with units of area. The solid angle, dΩ, is given by

dΩ = sin θdΘdΦ

where our use of upper case Greek letters distinguishes the center of mass frame (Θ,Φ) from the lab frame
(θ, ϕ). We take the z-axis as the direction of the incident beam, so that deviations from that direction are
given by Θ. Since scattering by central forces cannot depend on azimuthal angle, we may integrate over ϕ
and look at the probability for scattering into an annulus at angle Θ, of solid angle

dΩ = 2π sin ΘdΘ

Since the approaching beam of particles (of intensity, I) is generally moving at a fixed velocity, the total
energy, E = 1

2mv
2
0 , of the scattering is the same for all ecounters. It is therefore only the total angular

momentum, l, that determines the angle of scatter. We can find l by extending the initial beam particle
trajectory past the target. The distance of closest approach of this line is called the impact parameter, s,
and the angular momentum is just

l = mv0s

= s
√

2mE

If we let N (Θ) dΩ be the number of particles scattered between Θ and Θ + dΘ,

N (Θ) dΩ = 2πI
(
dσ

dΩ

)
sin Θ |dΘ|

this must equal the number with impact parameter between the corresponding s and s+ ds,

N (Θ) dΩ = 2πsI |ds|

we we need only find the relationship between impact parameter and scattering angle,

s (Θ, E)
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Then we have

2πI
(
dσ

dΩ

)
sin Θ |dΘ| = 2πsI |ds|

dσ

dΩ
=

s

sin Θ

∣∣∣∣ dsdΘ

∣∣∣∣
From our discussion of central forces, we have the angle as an integral over r,

ϕ− ϕ0 =

rˆ

r0

dr

r2
√

2µE
L2

ϕ
− 1

r2 − 2µV
L2

ϕ

where r = r0 when ϕ = ϕ0. Suppose µ ≈ m, and let Ψ0 = 0 when r = rmin, the actual point of closest
approach. Then if we integrate out to r =∞, we see that 2Ψ is the complement to Θ,

Θ = π − 2Ψ

with

Ψ =

∞̂

rmin

dr

r2
√

2µE
L2

ϕ
− 1

r2 − 2µV
L2

ϕ

=

∞̂

rmin

dr

r2

√
2mE
s22mE −

1
r2 − 2mV

s22mE

=

∞̂

rmin

dr

r2

√
1
s2

(
1− V

E

)
− 1

r2

=

∞̂

rmin

sdr

r
√
r2
(
1− V

E

)
− s2

Now set r = 1
u ,

Ψ =

∞̂

rmin

− 1
u2 sudu√

1
u2

(
1− V

E

)
− s2

= −s
∞̂

rmin

du√
1− V (u)

E − s2u2

Coulomb Scattering
As an important example, consider the case of repulsive Coulomb scattering,

f (r) =
ZZ ′e2

r2

= − k

r2

Then we have hyperbolic orbits,

r =
|A|
(
ε2 − 1

)
1 + ε cosϕ
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where, substituting Coulomb constants for the gravitational constants, the eccentricity is given by

ε =

√
1 +

2EL2
ϕ

(ZZ ′e2)2
m

=

√
1 +

2E (s22mE)
(ZZ ′e2)2

m

=

√
1 +

(
2Es
ZZ ′e2

)2

In this case, the angle Ψ is just the angle between the zero and maximum of the denominator in r. Since
the maximum occurs when Ψ = 0, we have

1 + ε cos Ψmin = 1 + e

1 + ε cos Ψmax = 0
Ψ = Ψmax −Ψmin

= cos−1

(
−1
ε

)
− 0

= cos−1

(
1
ε

)
Therefore,

Θ = π − 2Ψ

= π − 2 cos−1

(
1
ε

)
Θ
2
− π

2
= cos−1

(
1
ε

)
cos
(

Θ
2
− π

2

)
=

1
ε

sin
Θ
2

=
1
ε

Now solving for s (Θ),

ε =

√
1 +

(
2Es
ZZ ′e2

)2

ε2 − 1 =
(

2Es
ZZ ′e2

)2

s =
ZZ ′e2

2E

√
ε2 − 1

=
ZZ ′e2

2E

√
1

sin2 Θ
2

− 1

s =
ZZ ′e2

2E
cos Θ

2

sin Θ
2

so that we have simply

s =
ZZ ′e2

2E
cot

Θ
2
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ds

dΘ
= − ZZ ′e2

4E sin2 Θ
2

and substituting into the differential cross section,

dσ

dΩ
=

s

sin Θ

∣∣∣∣ dsdΘ

∣∣∣∣
=

(
ZZ′e2

2E

cos Θ
2

sin Θ
2

)
2 cos Θ

2 sin Θ
2

ZZ ′e2

4E sin2 Θ
2

=
Z2Z ′2e4

16E2 sin4 Θ
2

The result is the Rutherford cross section

dσ

dΩ
=

Z2Z ′2e4

16E2 sin4 Θ
2

which allowed for the discovery of the nucleus in the early 20th century, even though the calculation properly
requires a quantum treatment. It is a happy coincidence that the full quantum treatment still gives the
characteristic 1

sin4 Θ
2

behavior.
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