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1 Defining property
The squared length of a vector is given by taking the dot product of a vector with itself,

v2 = v · v
= gijv

ivj

An orthogonal transformation is a linear transformation of a vector space that preserves lengths of vectors.
This defining property may therefore be written as a linear transformation,

v′ = Ov

such that
v′ · v′ = v · v

Write this definition in terms of components using index notation. The transformation O must have mixed
indices so that the sum is over one index of each type and the free indices match,

v′i = Oi
jv

j

we have

gijv
′iv′j = gijv

ivj

gij
(
Oi

kv
k
) (
Oj

mv
m
)

= gijv
ivj(

gijO
i
kO

j
m

)
vkvm = gkmv

kvm

or, bringing both terms to the same side,(
gijO

i
kO

j
m − gkm

)
vkvm = 0

Because vk is arbitrary, we can easily make six independent choices so that the resulting six matrices vkvm
span the space of all symmetric matrices. The only way for all six of these to vanish when contracted on(
gijO

i
kO

j
m − gkm

)
is if

gijO
i
kO

j
m − gkm = 0

This is the defining property of an orthogonal transformation.
In Cartesian coordinates, gij = δij , and this condition may be written as

OtO = 1

where Ot is the transpose of O. This is equivalent to Ot = O−1.
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Notice that nothing in the preceeding arguments depends on the dimension of v being three. We conclude
that orthogonal transformations in any dimension n must satisfy OtO = 1, where O is an n × n matrix.
Consider the determinant of the defining condition,

det 1 = det
(
OtO

)
1 = detOt detO

and since the determinant of the transpose of a matrix equals the determinant of the original matrix, we
have detO = ±1. Any orthogonal transformation with detO = −1 is just the parity operator, P = −1 −1

−1

 times an orthogonal transformation with detO = +1, so if we treat parity independently

we have the special orthogonal group, SO (n), of unit determinant orthogonal transformations.

1.1 More detail
If the argument above is not already clear, it is easy to see what is happening in 2-dimensions. We have

vkvm =

(
v1v1 v1v2

v2v1 v2v2

)
which is a symmetric matrix. But

(
gijO

i
kO

j
m − gkm

)
vkvm = 0 must hold for all choices of vi. If we make

the choice vi = (1, 0) then

vkvm =

(
1 0
0 0

)
and

(
gijO

i
kO

j
m − gkm

)
vkvm = 0 implies gijOi

1O
j
1 = g11. Now choose vi = (0, 1) so that vkvm =

(
0 0
0 1

)
and we see we must also have gijOi

2O
j
2 = g22. Finally, let vi = (1, 1) so that vkvm =

(
1 1
1 1

)
. This gives

(
gijO

i
1O

j
1 − g11

)
+
(
gijO

i
1O

j
2 − g12

)
+
(
gijO

i
2O

j
1 − g21

)
+
(
gijO

i
2O

j
2 − g22

)
= 0

but by the previous two relations, the first and fourth term already vanish and we have(
gijO

i
1O

j
2 − g12

)
+
(
gijO

i
2O

j
1 − g21

)
= 0

Because gij = gji, these two terms are the same, and we conclude

gijO
i
kO

j
m = gkm

for all km. In 3-dimensions, six different choices for vi will be required.

2 Infinitesimal generators
We work in Cartesian coordinates, where we can use matrix notation. Then, for the real, 3-dimensional
representation of rotations, we require

Ot = O−1

Notice that the identity satisfies this condition, so we may consider linear transformations near the identity
which also satisfy the condition. Let

O = 1 + ε
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where [ε]ij = εij are all small, |εij | � 1 for all i, j. Keeping only terms to first order in εij , we have:

Ot = 1 + εt

O−1 = 1− ε

where we see that we have the right form for O−1 by computing

OO−1 = (1 + ε) (1− ε)
= 1− ε2

≈ 1

correct to first order in ε. Now we impose our condition,

Ot = O−1

1 + εt = 1− ε
εt = −ε

so that the matrix ε must be antisymmetric.
Next, we write the most general antisymmetric 3×3 matrix as a linear combination of a convenient basis,

ε = wiJi

= w1

 0 0 0
0 0 1
0 −1 0

+ w2

 0 0 −1
0 0 0
1 0 0

+ w3

 0 1 0
−1 0 0
0 0 0


=

 0 w2 −w3

−w2 0 w1

w3 −w1 0


where

∣∣wi
∣∣� 1. Notice that the components of the three matrices Ji are neatly summarized by

[Ji]jk = εijk

where εijk is the totally antisymmetric Levi-Civita tensor. For example, [J1]ij = ε1ij =

 0 0 0
0 0 1
0 −1 0

.

The matrices Ji are called the generators of the transformations. The most general antisymmetric is then a
linear combination of the three generators.

Knowing the generators is enough to recover an arbitrary rotation. Starting with

O = 1 + ε

we may apply O repeatedly, taking the limit

O (θ) = lim
n−→∞

On

= lim
n−→∞

(1 + ε)
n

= lim
n−→∞

(
1 + wiJi

)n
Let w be the length of the infinitesmal vector wi, so that wi = wni, where ni is a unit vector. Then the
limit is taken in such a way that

lim
n−→∞

nw = θ
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where θ is finite. Using the binomial expansion, (a+ b)
n
=
∑n

k=0
n!

k!(n−k)!a
n−kbk we have

lim
n−→∞

On = lim
n−→∞

(
1 + wiJi

)n
= lim

n−→∞

n∑
k=0

n!

k! (n− k)!
(1)

n−k (
wiJi

)k
= lim

n−→∞

n∑
k=0

n (n− 1) (n− 2) · · · (n− k + 1)

k!

1

nk
(
(nw)niJi

)k
= lim

n−→∞

n∑
k=0

n
n

(
n−1
n

) (
n−2
n

)
· · ·
(
n−k+1

n

)
k!

(
θniJi

)k
=

∞∑
k=0

1

k!

(
θniJi

)k
≡ exp

(
θniJi

)
We define the exponential of a matrix by the power series for the exponential, applied using powers of the
matrix. This is the matrix for a rotation through an angle θ around an axis in the direction of n.

To find the detailed form of a general rotation, we now need to find powers of niJi. This turns out to be
straightforward: [

niJi
]j
k

= niε j
i k[(

niJi
)2]m

n
=

(
niε m

i k

) (
njε k

j n

)
= ninjε m

i kε
k
j n

= −ninjε m
i kε

k
jn

= −ninj
(
δijδ

m
n − δinδmj

)
= −

(
δijn

inj
)
δmn + δinn

iδmj n
j

= −δmn + nmnn

= − (δmn − nmnn)[(
niJi

)3]m
n

= − (δmk − nmnk)niε k
i n

= −δmkniε k
i n + nmnkn

iε k
i n

= −niε m
i n + nmnkniεikn

= −
[
niJi

]m
n

where nmnkniεikn = nm (n× n) = 0. The powers come back to niJi with only a sign change, so we can
divide the series into even and odd powers. For all k > 0,[(

niJi
)2k]m

n
= (−1)k (δmn − nmnn)[(

niJi
)2k+1

]m
n

= (−1)k
[
niJi

]m
n

For k = 0 we have the identity,
[(
niJi

)0]m
n
= δmn.

We can now compute the exponential explicitly:

[O (θ, n̂)]
m
n =

[
exp

(
θniJi

)]m
n
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=

[ ∞∑
k=0

1

k!

(
θniJi

)k]m
n

=

[ ∞∑
l=0

1

(2l)!

(
θniJi

)2l]m
n

+

[ ∞∑
l=0

1

(2l + 1)!

(
θniJi

)2l+1

]m
n

=

[
1 +

∞∑
l=1

1

(2l)!

(
θniJi

)2l]m
n

+

[ ∞∑
l=0

1

(2l + 1)!

(
θniJi

)2l+1

]m
n

= δmn +

∞∑
l=1

(−1)l

(2l)!
θ2l (δmn − nmnn) +

∞∑
l=0

(−1)l

(2l + 1)!
θ2l+1

[
niJi

]m
n

= δmn + (cos θ − 1) (δmn − nmnn) + sin θniε m
i n

where we get (cos θ − 1) because the l = 0 term is missing from the sum.
To see what this means, let O act on an arbitrary vector v, and write the result in normal vector notation,

[O (θ, n̂)]
m
n v

n = δmnv
n + (cos θ − 1) (δmn − nmnn) vn + sin θniε m

i nv
n

= vm + (cos θ − 1) (δmnv
n − nmnnvn)− sin θnivnε m

in

= vm + (cos θ − 1) (vm − (n · v)nm)− [n× v]
m
sin θ

Going fully to vector notation,

O (θ, n̂)v = v + (cos θ − 1) (v − (n · v)n)− (n× v) sin θ

Finally, define the components of v parallel and perpendicular to the unit vector n:

v‖ = (v · n)n
v⊥ = v − (v · n)n

Therefore,

O (θ, n̂)v = v − (v − (v · n)n) + (v − (v · n)n) cos θ − sin θ (n× v)

= v‖ + v⊥ cos θ − sin θ (n× v)

This expresses the rotated vector in terms of three mutually perpendicular vectors, v‖,v⊥, (n× v). The
direction n is the axis of the rotation. The part of v parallel to n is therefore unchanged. The rotation takes
place in the plane perpendicular to n, and this plane is spanned by v⊥, (n× v). The rotation in this plane
takes v⊥ into the linear combination v⊥ cos θ− (n× v) sin θ, which is exactly what we expect for a rotation
of v⊥ through an angle θ. The rotation O (θ, n̂) is therefore a rotation by θ around the axis n̂.
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