Orthogonal transformations

October 12, 2014

1 Defining property

The squared length of a vector is given by taking the dot product of a vector with itself,

$$
\begin{aligned}
v^{2} & =\mathbf{v} \cdot \mathbf{v} \\
& =g_{i j} v^{i} v^{j}
\end{aligned}
$$

An orthogonal transformation is a linear transformation of a vector space that preserves lengths of vectors. This defining property may therefore be written as a linear transformation,

$$
\mathbf{v}^{\prime}=O \mathbf{v}
$$

such that

$$
\mathbf{v}^{\prime} \cdot \mathbf{v}^{\prime}=\mathbf{v} \cdot \mathbf{v}
$$

Write this definition in terms of components using index notation. The transformation O must have mixed indices so that the sum is over one index of each type and the free indices match,

$$
v^{i}=O_{j}^{i} v^{j}
$$

we have

$$
\begin{aligned}
g_{i j} v^{i} v^{\prime j} & =g_{i j} v^{i} v^{j} \\
g_{i j}\left(O_{k}^{i} v^{k}\right)\left(O^{j}{ }_{m} v^{m}\right) & =g_{i j} v^{i} v^{j} \\
\left(g_{i j} O_{k}^{i} O^{j}{ }_{m}\right) v^{k} v^{m} & =g_{k m} v^{k} v^{m}
\end{aligned}
$$

or, bringing both terms to the same side,

$$
\left(g_{i j} O_{k}^{i} O_{m}^{j}-g_{k m}\right) v^{k} v^{m}=0
$$

Because v^{k} is arbitrary, we can easily make six independent choices so that the resulting six matrices $v^{k} v^{m}$ span the space of all symmetric matrices. The only way for all six of these to vanish when contracted on $\left(g_{i j} O_{k}^{i} O^{j}{ }_{m}-g_{k m}\right)$ is if

$$
g_{i j} O_{k}^{i} O_{m}^{j}-g_{k m}=0
$$

This is the defining property of an orthogonal transformation.
In Cartesian coordinates, $g_{i j}=\delta_{i j}$, and this condition may be written as

$$
O^{t} O=1
$$

where O^{t} is the transpose of O. This is equivalent to $O^{t}=O^{-1}$.

Notice that nothing in the preceeding arguments depends on the dimension of \mathbf{v} being three. We conclude that orthogonal transformations in any dimension n must satisfy $O^{t} O=1$, where O is an $n \times n$ matrix. Consider the determinant of the defining condition,

$$
\begin{aligned}
\operatorname{det} 1 & =\operatorname{det}\left(O^{t} O\right) \\
1 & =\operatorname{det} O^{t} \operatorname{det} O
\end{aligned}
$$

and since the determinant of the transpose of a matrix equals the determinant of the original matrix, we have $\operatorname{det} O= \pm 1$. Any orthogonal transformation with $\operatorname{det} O=-1$ is just the parity operator, $P=$ $\left(\begin{array}{ccc}-1 & & \\ & -1 & \\ & & -1\end{array}\right)$ times an orthogonal transformation with $\operatorname{det} O=+1$, so if we treat parity independently we have the special orthogonal group, $S O(n)$, of unit determinant orthogonal transformations.

1.1 More detail

If the argument above is not already clear, it is easy to see what is happening in 2-dimensions. We have

$$
v^{k} v^{m}=\left(\begin{array}{cc}
v^{1} v^{1} & v^{1} v^{2} \\
v^{2} v^{1} & v^{2} v^{2}
\end{array}\right)
$$

which is a symmetric matrix. But $\left(g_{i j} O_{k}^{i} O^{j}{ }_{m}-g_{k m}\right) v^{k} v^{m}=0$ must hold for all choices of v^{i}. If we make the choice $v^{i}=(1,0)$ then

$$
v^{k} v^{m}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

and $\left(g_{i j} O_{k}^{i} O^{j}{ }_{m}-g_{k m}\right) v^{k} v^{m}=0$ implies $g_{i j} O_{1}^{i} O_{1}^{j}=g_{11}$. Now choose $v^{i}=(0,1)$ so that $v^{k} v^{m}=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ and we see we must also have $g_{i j} O_{2}^{i} O_{2}^{j}=g_{22}$. Finally, let $v^{i}=(1,1)$ so that $v^{k} v^{m}=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$. This gives

$$
\left(g_{i j} O_{1}^{i} O_{1}^{j}-g_{11}\right)+\left(g_{i j} O_{1}^{i} O_{2}^{j}-g_{12}\right)+\left(g_{i j} O_{2}^{i} O_{1}^{j}-g_{21}\right)+\left(g_{i j} O_{2}^{i} O_{2}^{j}-g_{22}\right)=0
$$

but by the previous two relations, the first and fourth term already vanish and we have

$$
\left(g_{i j} O_{1}^{i} O_{2}^{j}-g_{12}\right)+\left(g_{i j} O_{2}^{i} O_{1}^{j}-g_{21}\right)=0
$$

Because $g_{i j}=g_{j i}$, these two terms are the same, and we conclude

$$
g_{i j} O_{k}^{i} O^{j}{ }_{m}=g_{k m}
$$

for all $k m$. In 3-dimensions, six different choices for v^{i} will be required.

2 Infinitesimal generators

We work in Cartesian coordinates, where we can use matrix notation. Then, for the real, 3-dimensional representation of rotations, we require

$$
O^{t}=O^{-1}
$$

Notice that the identity satisfies this condition, so we may consider linear transformations near the identity which also satisfy the condition. Let

$$
O=1+\varepsilon
$$

where $[\varepsilon]_{i j}=\varepsilon_{i j}$ are all small, $\left|\varepsilon_{i j}\right| \ll 1$ for all i, j. Keeping only terms to first order in $\varepsilon_{i j}$, we have:

$$
\begin{aligned}
O^{t} & =1+\varepsilon^{t} \\
O^{-1} & =1-\varepsilon
\end{aligned}
$$

where we see that we have the right form for O^{-1} by computing

$$
\begin{aligned}
O O^{-1} & =(1+\varepsilon)(1-\varepsilon) \\
& =1-\varepsilon^{2} \\
& \approx 1
\end{aligned}
$$

correct to first order in ε. Now we impose our condition,

$$
\begin{aligned}
O^{t} & =O^{-1} \\
1+\varepsilon^{t} & =1-\varepsilon \\
\varepsilon^{t} & =-\varepsilon
\end{aligned}
$$

so that the matrix ε must be antisymmetric.
Next, we write the most general antisymmetric 3×3 matrix as a linear combination of a convenient basis,

$$
\begin{aligned}
\varepsilon & =w^{i} J_{i} \\
& =w^{1}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)+w^{2}\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)+w^{3}\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& =\left(\begin{array}{ccc}
0 & w^{2} & -w^{3} \\
-w^{2} & 0 & w^{1} \\
w^{3} & -w^{1} & 0
\end{array}\right)
\end{aligned}
$$

where $\left|w^{i}\right| \ll 1$. Notice that the components of the three matrices J_{i} are neatly summarized by

$$
\left[J_{i}\right]_{j k}=\varepsilon_{i j k}
$$

where $\varepsilon_{i j k}$ is the totally antisymmetric Levi-Civita tensor. For example, $\left[J_{1}\right]_{i j}=\varepsilon_{1 i j}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right)$.
The matrices J_{i} are called the generators of the transformations. The most general antisymmetric is then a linear combination of the three generators.

Knowing the generators is enough to recover an arbitrary rotation. Starting with

$$
O=1+\varepsilon
$$

we may apply O repeatedly, taking the limit

$$
\begin{aligned}
O(\theta) & =\lim _{n \xrightarrow{\longrightarrow}} O^{n} \\
& =\lim _{n \longrightarrow \infty}(1+\varepsilon)^{n} \\
& =\lim _{n \longrightarrow \infty}\left(1+w^{i} J_{i}\right)^{n}
\end{aligned}
$$

Let w be the length of the infinitesmal vector w_{i}, so that $w_{i}=w n_{i}$, where n_{i} is a unit vector. Then the limit is taken in such a way that

$$
\lim _{n \longrightarrow \infty} n w=\theta
$$

where θ is finite. Using the binomial expansion, $(a+b)^{n}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} a^{n-k} b^{k}$ we have

$$
\begin{aligned}
\lim _{n \longrightarrow \infty} O^{n} & =\lim _{n \longrightarrow \infty}\left(1+w^{i} J_{i}\right)^{n} \\
& =\lim _{n \longrightarrow \infty} \sum_{k=0}^{n} \frac{n!}{k!(n-k)!}(1)^{n-k}\left(w^{i} J_{i}\right)^{k} \\
& =\lim _{n \longrightarrow \infty} \sum_{k=0}^{n} \frac{n(n-1)(n-2) \cdots(n-k+1)}{k!} \frac{1}{n^{k}}\left((n w) n^{i} J_{i}\right)^{k} \\
& =\lim _{n \longrightarrow \infty} \sum_{k=0}^{n} \frac{\frac{n}{n}\left(\frac{n-1}{n}\right)\left(\frac{n-2}{n}\right) \cdots\left(\frac{n-k+1}{n}\right)}{k!}\left(\theta n^{i} J_{i}\right)^{k} \\
& =\sum_{k=0}^{\infty} \frac{1}{k!}\left(\theta n^{i} J_{i}\right)^{k} \\
& \equiv \exp \left(\theta n^{i} J_{i}\right)
\end{aligned}
$$

We define the exponential of a matrix by the power series for the exponential, applied using powers of the matrix. This is the matrix for a rotation through an angle θ around an axis in the direction of \mathbf{n}.

To find the detailed form of a general rotation, we now need to find powers of $n^{i} J_{i}$. This turns out to be straightforward:

$$
\begin{aligned}
{\left[n^{i} J_{i}\right]_{k}^{j} } & =n^{i} \varepsilon_{i}{ }_{k} \\
{\left[\left(n^{i} J_{i}\right)^{2}\right]_{n}^{m} } & =\left(n^{i} \varepsilon_{i}{ }_{k}^{m}\right)\left(n^{j} \varepsilon_{j n}^{k}\right) \\
& =n^{i} n^{j} \varepsilon_{i k}^{m} \varepsilon_{j n}^{k} \\
& =-n^{i} n^{j} \varepsilon_{i k}^{m} \varepsilon_{j n}{ }^{k} \\
& =-n^{i} n^{j}\left(\delta_{i j} \delta_{n}^{m}-\delta_{i n} \delta_{j}^{m}\right) \\
& =-\left(\delta_{i j} n^{i} n^{j}\right) \delta_{n}^{m}+\delta_{i n} n^{i} \delta_{j}^{m} n^{j} \\
& =-\delta_{n}^{m}+n^{m} n_{n} \\
& =-\left(\delta_{n}^{m}-n^{m} n_{n}\right) \\
{\left[\left(n^{i} J_{i}\right)^{3}\right]_{n}^{m} } & =-\left(\delta_{k}^{m}-n^{m} n_{k}\right) n^{i} \varepsilon_{i}{ }^{k} \\
& =-\delta_{k}^{m} n^{i} \varepsilon_{i}^{k}+n^{m} n_{k} n^{i} \varepsilon_{i n}^{k} \\
& =-n^{i} \varepsilon_{i}^{m}+n^{m} n^{k} n^{i} \varepsilon_{i k n} \\
& =-\left[n^{i} J_{i}\right]_{n}^{m}
\end{aligned}
$$

where $n^{m} n^{k} n^{i} \varepsilon_{i k n}=n^{m}(\mathbf{n} \times \mathbf{n})=0$. The powers come back to $n^{i} J_{i}$ with only a sign change, so we can divide the series into even and odd powers. For all $k>0$,

$$
\begin{aligned}
{\left[\left(n^{i} J_{i}\right)^{2 k}\right]_{n}^{m} } & =(-1)^{k}\left(\delta_{n}^{m}-n^{m} n_{n}\right) \\
{\left[\left(n^{i} J_{i}\right)^{2 k+1}\right]_{n}^{m} } & =(-1)^{k}\left[n^{i} J_{i}\right]_{n}^{m}
\end{aligned}
$$

For $k=0$ we have the identity, $\left[\left(n^{i} J_{i}\right)^{0}\right]_{n}^{m}=\delta_{n}^{m}$.
We can now compute the exponential explicitly:

$$
[O(\theta, \hat{\mathbf{n}})]_{n}^{m}=\left[\exp \left(\theta n^{i} J_{i}\right)\right]_{n}^{m}
$$

$$
\begin{aligned}
& =\left[\sum_{k=0}^{\infty} \frac{1}{k!}\left(\theta n^{i} J_{i}\right)^{k}\right]_{n}^{m} \\
& =\left[\sum_{l=0}^{\infty} \frac{1}{(2 l)!}\left(\theta n^{i} J_{i}\right)^{2 l}\right]_{n}^{m}+\left[\sum_{l=0}^{\infty} \frac{1}{(2 l+1)!}\left(\theta n^{i} J_{i}\right)^{2 l+1}\right]_{n}^{m} \\
& =\left[1+\sum_{l=1}^{\infty} \frac{1}{(2 l)!}\left(\theta n^{i} J_{i}\right)^{2 l}\right]_{n}^{m}+\left[\sum_{l=0}^{\infty} \frac{1}{(2 l+1)!}\left(\theta n^{i} J_{i}\right)^{2 l+1}\right]_{n}^{m} \\
& =\delta_{n}^{m}+\sum_{l=1}^{\infty} \frac{(-1)^{l}}{(2 l)!} \theta^{2 l}\left(\delta_{n}^{m}-n^{m} n_{n}\right)+\sum_{l=0}^{\infty} \frac{(-1)^{l}}{(2 l+1)!} \theta^{2 l+1}\left[n^{i} J_{i}\right]_{n}^{m} \\
& =\delta_{n}^{m}+(\cos \theta-1)\left(\delta_{n}^{m}-n^{m} n_{n}\right)+\sin \theta n^{i} \varepsilon_{i}^{m}
\end{aligned}
$$

where we get $(\cos \theta-1)$ because the $l=0$ term is missing from the sum.
To see what this means, let O act on an arbitrary vector \mathbf{v}, and write the result in normal vector notation,

$$
\begin{aligned}
{[O(\theta, \hat{\mathbf{n}})]_{n}^{m} v^{n} } & =\delta_{n}^{m} v^{n}+(\cos \theta-1)\left(\delta_{n}^{m}-n^{m} n_{n}\right) v^{n}+\sin \theta n^{i} \varepsilon_{i}^{m} v^{n} \\
& =v^{m}+(\cos \theta-1)\left(\delta_{n}^{m} v^{n}-n^{m} n_{n} v^{n}\right)-\sin \theta n^{i} v^{n} \varepsilon_{i n} m \\
& =v^{m}+(\cos \theta-1)\left(v^{m}-(\mathbf{n} \cdot \mathbf{v}) n^{m}\right)-[\mathbf{n} \times \mathbf{v}]^{m} \sin \theta
\end{aligned}
$$

Going fully to vector notation,

$$
O(\theta, \hat{\mathbf{n}}) \mathbf{v}=\mathbf{v}+(\cos \theta-1)(\mathbf{v}-(\mathbf{n} \cdot \mathbf{v}) \mathbf{n})-(\mathbf{n} \times \mathbf{v}) \sin \theta
$$

Finally, define the components of \mathbf{v} parallel and perpendicular to the unit vector \mathbf{n} :

$$
\begin{aligned}
\mathbf{v}_{\|} & =(\mathbf{v} \cdot \mathbf{n}) \mathbf{n} \\
\mathbf{v}_{\perp} & =\mathbf{v}-(\mathbf{v} \cdot \mathbf{n}) \mathbf{n}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
O(\theta, \hat{\mathbf{n}}) \mathbf{v} & =\mathbf{v}-(\mathbf{v}-(\mathbf{v} \cdot \mathbf{n}) \mathbf{n})+(\mathbf{v}-(\mathbf{v} \cdot \mathbf{n}) \mathbf{n}) \cos \theta-\sin \theta(\mathbf{n} \times \mathbf{v}) \\
& =\mathbf{v}_{\|}+\mathbf{v}_{\perp} \cos \theta-\sin \theta(\mathbf{n} \times \mathbf{v})
\end{aligned}
$$

This expresses the rotated vector in terms of three mutually perpendicular vectors, $\mathbf{v}_{\|}, \mathbf{v}_{\perp},(\mathbf{n} \times \mathbf{v})$. The direction \mathbf{n} is the axis of the rotation. The part of \mathbf{v} parallel to \mathbf{n} is therefore unchanged. The rotation takes place in the plane perpendicular to \mathbf{n}, and this plane is spanned by $\mathbf{v}_{\perp},(\mathbf{n} \times \mathbf{v})$. The rotation in this plane takes \mathbf{v}_{\perp} into the linear combination $\mathbf{v}_{\perp} \cos \theta-(\mathbf{n} \times \mathbf{v}) \sin \theta$, which is exactly what we expect for a rotation of \mathbf{v}_{\perp} through an angle θ. The rotation $O(\theta, \hat{\mathbf{n}})$ is therefore a rotation by θ around the axis $\hat{\mathbf{n}}$.

