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1 Non-inertial frames of reference
So far we have formulated classical mechanics in inertial frames of reference, i.e., those vector bases in
which Newton’s second law holds (we have also allowed general coordinates, in which the Euler-Lagrange
equations hold). However, it is sometimes useful to use non-inertial frames, and particularly when a system
is rotating. When we affix an orthonormal frame to the surface of Earth, for example, that frame rotates
with Earth’s motion and is therefore non-inertial. The effect of this is to add terms to the acceleration due
to the acceleration of the reference frame. Typically, these terms can be brought to the force side of the
equation, giving rise to the idea of fictitious forces – centrifugal force and the Coriolis force are examples.

Here we concern ourselves with rotating frames of reference.

2 Rotating frames of reference

2.1 Relating rates of change in inertial and rotating systems
It is fairly easy to include the effect of a rotating vector basis. Consider the change, db, of some physical
quantity describing a rotating body. We write this in two different reference frames, one inertial and one
rotating with the body. The difference between these will be the change due to the rotation,

(db)inertial = (db)body + (db)rot

Now consider an infinitesimal rotation. We showed that the transformation matrix must have the form

O (dθ, n̂) = 1 + dθn̂ · J

where
[Ji]jk = εijk

Using this form of J, we may write

[O (dθ, n̂)]jk = δjk + dθniεijk

We must establish the direction of this rotation. Suppose n̂ is in the z-direction, ni = (0, 0, 1). Then acting
on a vector in the xy-plane, say [i]i = (1, 0, 0), we have

[O (dθ, n̂)]jk ik = (δjk + dθniεijk) ik
= (ij + dθε3j1)
= (1, 0, 0) + dθ (0,−1, 0)

since ε3j1 must have j = 2 to be nonzero, and ε321 = −1. The vector acquires a negative y-component, and
has therefore rotated clockwise. A counterclockwise (positive) rotation is therefore given by acting with

O (dθ, n̂) = 1− dθn̂ · J
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Suppose a vector at time t, b (t) is fixed in a body which rotates with angular velocity ω = dθ
dtn. Then

after a time dt it will have rotated through an angle dθ = ωdt, so that at time t+ dt the vector is

b (t+ dt) = O (dθ, n̂) b (t)

In components,

bj (t+ dt) = (δjk − dθniεijk) bk (t)
= δjkbk (t)− dθniεijkbk (t)
= bj (t)− dθniεijkbk (t)
= bj (t)− dθ (εkijbk (t)ni)

Therefore, returning to vector notation,

b (t+ dt)− b (t) = −dθb (t)× n

Dividing by dt we get the rate of change,

db (t)
dt

= ω × b (t)

If, instead of remaining fixed in the rotating system, b (t) moves relative to the rotating body, its rate of
change is the sum of this change and the rate of change due to rotation,(

db
dt

)
inertial

=
(
db
dt

)
body

+ ω × b (t)

and since b (t) is arbitrary, we can make the operator identification(
d

dt

)
inertial

=
(
d

dt

)
body

+ ω×

2.2 Dynamics in a rotating frame of reference
Consider two frames of reference, an inertial frame, and a rotating frame whose origin remains at the origin
of the inertial frame. Let r (t) be the position vector of a particle in the rotating frame of reference. Then
the velocity of the particle in an inertial frame, vinertial, and the velocity in the rotating frame, vbody, are
related by (

dr
dt

)
inertial

=
(
dr
dt

)
body

+ ω × r

vinertial = vbody + ω × r

To find the acceleration, we apply the operator again,

dvinertial
dt

=
(
d

dt
+ ω×

)
(vbody + ω × r)

=
d (vbody + ω × r)

dt
+ ω × (vbody + ω × r)

=
(
dv
dt

)
body

+
dω

dt
× r + ω × dr

dt
+ ω × vbody + ω × (ω × r)

=
(
dv
dt

)
body

+
dω

dt
× r + 2ω × vbody + ω × (ω × r)
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The accelerations are therefore related by

ainertial = abody +
dω

dt
× r + 2ω × vbody + ω × (ω × r)

Since Newton’s second law holds in the inertial frame, we have

F = mainertial

where F refers to any applied forces. Therefore, bringing the extra terms to the left,

F−mdω

dt
× r− 2mω × vbody −mω × (ω × r) = mabody

This is the Coriolis theorem. We consider each term.
The first

−mdω

dt
applies only if the rate of rotation is changing. The direction makes sense, because if the angular velocity is
increasing, then dω

dt is in the direction of the rotation and the inertia of the particle will resist this change.
The effective force is therefore in the opposite direction.

The second term
−2mω × vbody

is called the Coriolis force. Notice that it is greatest if the velocity is perpendicular to the axis of rotation.
This corresponds to motion which, for positive vbody, moves the particle further from the axis of rotation.
Since the velocity required to stay above a point on a rotating body increases with increasing distance from
the axis, the particle will be moving too slow to keep up. It therefore seems that a force is acting in the
direction opposite to the direction of rotation. For example, consider a particle at Earth’s equator which
is gaining altitude. Since Earth rotates from west to east, the rising particle will fall behind and therefore
seem to accelerate from toward the west.

The final term
−mω × (ω × r)

is the familiar centrifugal force (arising from centripetal acceleration). For Earth’s rotation, ω × r is the
direction of the velocity of a body rotating with Earth, and direction of the centrifugal force is therefore
directly away from the axis of rotation. The effect is due to the tendency of the body to move in a straight
line in the inertial frame, hence away from the axis. For a particle at the equator, the centrifugal force
is directed radially outward, opposing the force of gravity. The net acceleration due to gravity and the
centrifugal acceleration is therefore,

geff = g − ω2r

= 9.8−
(
7.29× 10−5

)2 × 6.38× 106

= 9.8− .0339
= g (1− .035)

so that the gravitational attraction is reduced by about 3.5%. Since the effect is absent near the poles, Earth
is not a perfect sphere, but has an equatorial bulge.

3 Moment of Inertia
Fix an arbitrary inertial frame of reference, and consider a rigid body. onsider the total torque on the body.
The torque on the ith particle due to internal forces will be

τ i =
N∑
j=1

ri × Fji
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where Fji is the force exerted by the jth particle on the ith particle. The total torque on the body is therefore
the double sum,

τ internal =
N∑
i=1

N∑
j=1

ri × Fji

=
1
2

N∑
i<1

N∑
j=1

(ri × Fji + rj × Fij)

=
1
2

N∑
i<1

N∑
j=1

(ri − rj)× Fji

where we use Newton’s third law in the last step. However, we assume that the forces between particles
within the rigid body are along the line joining the two particles, so we have

Fji = Fji
ri − rj
|ri − rj |

so all the cross products vanish, and
τ internal = 0

Therefore, we consider only external forces acting on the body when we compute the torque.
Now it is easier to work in the continuum limit. Let the density at each point of the body be ρ (r) (for a

discrete collection of masses, we may let ρ be a sum of Dirac delta functions and recover the discrete picture).
The contribution to the total torque of an external force dF (r) acting at position r of the body is

dτ = r× dF (r)

and the total follows by integrating this. Substituting for the force using Newton’s second law, dF (r) =
dv
dt dm = dv

dt ρ (r) d3x we have

τ =
ˆ

r× dv
dt
dm

=
ˆ
ρ (r)

(
r× dv

dt

)
d3x

=
ˆ
ρ (r)

[
d

dt
(r× v)−

(
dr
dt
× v

)]
d3x

Since dr
dt × v = v × v = 0, and the density is independent of time,

τ =
d

dt

ˆ
ρ (r) (r× v) d3x

Notice the the right-hand side is just the total angular momentum, since dL for a small mass element
dm = ρd3x is dL = ρ (r) (r× v).

Now suppose the body rotates with angular velocity ω. Then the velocity of any point in the body is
ω × r, so

τ =
d

dt

ˆ
ρ (r) (r× (ω × r)) d3x

=
d

dt

ˆ
ρ (r)

(
ωr2 − r (r · ω)

)
d3x
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We would like to separate the properties intrinsic to the rigid body from those dependent on its motion.
To do this, we extract ω from the integral above, but this required index notation. Write the equation in
components,

τi =
ˆ
ρ (r)

(
ωir

2 − rirjωj
)
d3x

=
ˆ
ρ (r)

(
ωjδijr

2 − rirjωj
)
d3x

= ωj

ˆ
ρ (r)

(
δijr

2 − rirj
)
d3x

Notice how the use of dummy indices and the Kronecker delta allows us to get the same index on ωj in both
terms so that we can bring it outside. Now define the moment of inertia tensor,

Iij ≡
ˆ
ρ (r)

(
δijr

2 − rirj
)
d3x

which depends only on the particular rigid body. This tensor is symmetric,

Iij = Iji

The torque equation may now be written as

τi =
d

dt
(Iijωj)

We have therefore shown that the angluar momentum is

Li = Iijωj

where equation of motion in an inertial frame is simply

τ =
dL
dt

In general, Iij is not proportional to the identity, so that the angular momentum and the angular velocity
are not parallel.

3.1 Rotating reference frame and the Euler equation
Next, suppose we look at the equation of motion in a rotating frame of reference. We must replace the time
derivative, (

d

dt

)
inertial

=
(
d

dt

)
body

+ ω×

and the equation of motion becomes

τ =
(
dL
dt

)
b

+ ω × L

This is the Euler equation.
In order to use the Euler equation, it is helpful work in a particular frame of reference. Given our rotating

frame, any constant orthogonal transformation of the basis takes us to another equivalent rotating frame,
but with a different orientation of the basis vectors. Furthermore, we know that any symmetric matrix may
be diagonalized by an orthogonal transformation. Therefore, it is possible to rotate our basis to one in which
Iij is diagonal. In this basis, we have

[I]ij =

 I11 0 0
0 I22 0
0 0 I33


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The three eigenvalues, I11, I22 and I33 are called the principal moments of inertia.
If we now write out the Euler equation in components using the principal moments, we have

τi =
d

dt
Iijωj + εijkωjIkmωm

so writing each component separately,

τ1 =
d

dt
I1jωj + ε1jkωjIkmωm

=
d

dt
I11ω1 + ε123ω2I3mωm + ε132ω3I2mωm

= I11
dω1

dt
+ ε123ω2I33ω3 + ε132ω3I22ω2

= I11
dω1

dt
+ ω2ω3 (I33 − I22)

and similarly,

τ2 =
d

dt
I22ω2 + ε231ω3I11ω1 + ε213ω1I33ω3

= I22
dω2

dt
+ ω3ω1 (I11 − I33)

and

τ3 =
d

dt
I33ω3 + ε312ω1I22ω2 + ε321ω2I11ω1

= I33
dω3

dt
+ ω1ω2 (I22 − I11)

Introducing the briefer (but potentially misleading) notation

I1 = I11

I2 = I22

I3 = I33

we have the Euler equations in the form0

τ1 = I1ω̇1 − ω2ω3 (I2 − I3)
τ2 = I2ω̇2 − ω3ω1 (I3 − I1)
τ3 = I3ω̇3 − ω1ω2 (I1 − I2)

3.2 Torque-free motion
When the torque vanishes, both the kinetic energy and the angular momentum are conserved. To find the
kinetic energy, we write the action. There is no potential; in the inertial frame, the kinetic energy is the
integral over the rigid body,

T =
1
2

ˆ
ρ (r) v2d3x

=
1
2

ˆ
ρ (r) (ω × r) · (ω × r) d3x

=
1
2

ˆ
ρ (r) (εimnωmrn) (εijkωjrk) d3x
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=
1
2

ˆ
ρ (r) (εmniεjki)ωmrnωjrkd3x

=
1
2

ˆ
ρ (r) (δmjδnk − δmkδnj)ωmrnωjrkd3x

=
1
2
ωmωj

ˆ
ρ (r) (δmjrnrn − rjrm) d3x

=
1
2
ωmωjImj

so we have
T =

1
2
Iijωiωj

The action is therefore
S =

ˆ
1
2
Iijωiωjdt

where ωi = ϕ̇ni. Since there is no explicit time dependence, the energy

E =
∂L

∂ϕ̇
ϕ̇− L

= (Iijninjϕ̇) ϕ̇− 1
2
Iijωiωj

=
1
2
Iijωiωj

is conserved. We also know that the total angular momentum is conserved,

Li = Iijωj

Suppose, for concreteness, that I3 < I2 < I1. The case when two of the principal moments are equal is
simpler and will be examined separately. Then for torque-free motion, the Euler equations become

I1ω̇1 = ω2ω3 (I2 − I3)
I2ω̇2 = −ω3ω1 (I1 − I3)
I3ω̇3 = ω1ω2 (I1 − I2)

where the differences on the right are non-negative. Add multiples of the first pair:

I1 (I1 − I3)ω1ω̇1 = ω1ω2ω3 (I1 − I3) (I2 − I3)
I2 (I2 − I3)ω2ω̇2 = −ω2ω3ω1 (I1 − I3) (I2 − I3)

to find

0 = I1 (I1 − I3)ω1ω̇1 + I2 (I2 − I3)ω2ω̇2

=
1
2
d

dt

(
I1 (I1 − I3)ω2

1 + I2 (I2 − I3)ω2
2

)
so with A constant, we have

I1 (I1 − I3)ω2
1 + I2 (I2 − I3)ω2

2 = A

Similarly, we find a relation between ω2
3 and ω2

2 ,

I2 (I1 − I2)ω2ω̇2 = −ω3ω1ω2 (I1 − I3) (I1 − I2)
I3 (I1 − I3)ω3ω̇3 = ω1ω2ω3 (I1 − I2) (I1 − I3)
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so

0 =
1
2
d

dt

(
I2 (I1 − I2)ω2

2 + I3 (I1 − I3)ω2
3

)
Calling the second constant B, we solve for two of the components,

I1ω
2
1 =

1
I1 − I3

[
A− I2 (I2 − I3)ω2

2

]
I3ω

2
3 =

1
I1 − I3

[
B − I2 (I1 − I2)ω2

2

]
Substituting into the energy,

2E = I1ω
2
1 + I2ω

2
2 + I3ω

2
3

=
1

I1 − I3
[
A− I2 (I2 − I3)ω2

2

]
+ I2ω

2
2 +

1
I1 − I3

[
B − I2 (I1 − I2)ω2

2

]
=

1
I1 − I3

(
A+B − I2 (I2 − I3)ω2

2 + I2 (I1 − I3)ω2
2 − I2 (I1 − I2)ω2

2

)
=

1
I1 − I3

(
A+B + (−I2I2 + I2I3 + I1I2 − I2I3 − I1I2 + I2I2)ω2

2

)
=

1
I1 − I3

(A+B)

so the sum of the constants is related to the energy,

A+B = 2 (I1 − I3)E

To find the remaining component, we solve for ω1 and ω3,

ω1 =

√
1

I1 (I1 − I3)
(A− I2 (I2 − I3)ω2

2)

ω3 =

√
1

I3 (I1 − I3)
(B − I2 (I1 − I2)ω2

2)

and substitute into the differentital equation for ω2,

I2ω̇2 = −ω3ω1 (I1 − I3)

Integrating gives an expression which can be written in terms of elliptic integrals,

−
√
I1I2I3
AB

t =
ˆ

dω2√(
1− I2(I2−I3)

A ω2
2

)(
1− I2(I1−I2)

B ω2
2

)
Rescale ω2, letting

χ =

√
I2 (I2 − I3)

A
ω2

Then

−
√
I2 (I2 − I3)

A

√
I1I2I3
AB

t =
ˆ

dχ√
(1− χ2) (1− k2χ2)

where
k2 =

A (I1 − I2)
B (I2 − I3)
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The right side is Jacobi’s form of the elliptic integral of the first kind,

F (x, k) =
ˆ x

0

dt√
(1− t2) (1− k2t2)

so we have

−
√
I2 (I2 − I3)

A

√
I1I2I3
AB

t = F

(√
I2 (I2 − I3)

A
ω2,

A (I1 − I2)
B (I2 − I3)

)
We show below that for a symmetric body, the torque-free solution is much easier to understand.

3.3 Torque-free motion of a symmetric rigid body
Now consider the case when two of the moments of inertia are equal. This happens when th rigid body is
rotationally symmetric around one axis. Let the z-axis be the axis of symmetry. Then I1 = I2, and the
torque-free Euler equations become

0 = I1ω̇1 − ω2ω3 (I1 − I3)
0 = I1ω̇2 + ω1ω3 (I1 − I3)
0 = I3ω̇3

The final equation shows that ω3 is constant. Defining the constant frequency

Ω ≡ ω3

(
I1 − I3
I1

)
the remaining two equations are

ω̇1 = Ωω2

ω̇2 = −Ωω1

We decouple these by differentiating the first and substituting the second,

ω̈1 = Ωω̇2

= −Ω2ω1

and similarly, by differentiating the second and substituting the first. This results in the pair

ω̈1 + Ω2ω1 = 0
ω̈2 + Ω2ω2 = 0

with the immediate solution

ω1 = A cos Ωt+B sin Ωt

for ω1 and, returning to the original equation ω̇1 = Ωω2,

ω2 = −A sin Ωt+B cos Ωt

Notice that
ω2

1 + ω2
2 = A2 +B2

so the x and y components of the angular velocity together form a constant length vector that precesses
around the z axis. If the angular velocity is dominated by ω3, the remaining components give the object a
“wobble” – it spins slightly off its symmetry axis, precessing. On the other hand, if ω3 is small, the motion
is a “tumble” – end over end rotation of its symmetry axis.

Remember that this analysis takes place in a frame of reference rotating with angular velocity ω. If all
of the motion were about the z-axis, the object would be at rest in the rotating frame. The fact that we
get time dependence of our solution for ω means that even in a frame rotating with the body, the body
precesses. If we transform back to the inertial frame, it is also spinning.
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4 Lagrangian approach to rigid bodies
To study symmetric rigid bodies with one point fixed and gravity acting – tops – we begin afresh and write
an action for the problem. In order to do this, we require some set of coordinates. These are taken to be the
Euler angles. There are actually many ways to define a useful set of three angles; we follow the definition
used in Goldstein, Section 4.4.

Our goal is to related a fixed inertial system, (x′, y′, z′) to a set of Cartesian axes fixed in the top, (x, y, z).
The relationship is defined by concatenating three rotations:

1. Rotate about the z-axis through an angle ϕ, giving intermetiate coordinates ξ = (ξ1, ξ2, ξ3). Call this
coordinate transformation matrix D.

2. Rotate about the ξ1 axis by an angle θ, giving coordinates ξ′. Call this coordinate transformation
matrix C.

3. Rotate about ξ
′

3 by an angle ψ to the final x coordinates. Call this coordinate transformation matrix
B.

We may think of (θ, ϕ) as the direction of the symmetry axis of the top, with ψ giving its angle of rotation
about that axis. It is easy to construct the full transformation between x′ and x because each of these
transformations, D,C,B is a simple 2-dim rotation. The full transformation, A, is therefore just the product

x = Ax′

= BCDx′

of the three, applying D first, then C, then B, where

D =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1


C =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ


B =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


Multiplying this out, we have

A = BCD

=

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1


=

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 cosϕ sinϕ 0
− cos θ sinϕ cos θ cosϕ sin θ
sin θ sinϕ − sin θ cosϕ cos θ


=

 cosψ cosϕ− cos θ sinϕ sinψ sinϕ cosψ + cos θ cosϕ sinψ sinψ sin θ
− sinψ cosϕ− cos θ sinϕ cosψ − sinϕ sinψ + cos θ cosϕ cosψ cosψ sin θ

sin θ sinϕ − sin θ cosϕ cos θ


The inverse transformation is just the transpose, At = A−1.
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Now denote the angular velocity vector of the rigid body as ω′ with respect to the inertial frame or
reference, and let this velocity be the time derivative of the Euler angles, ,

(
ϕ̇, θ̇, ψ̇

)
. We can write this a

vector relationship using the intermetiate coordinates,

ω = ϕ̇ẑ′ + θ̇ξ̂1 + ψ̇ẑ

Using A,B,C and D we can find these components with respect to the body frame. For the first term, ϕ̇ẑ′

we write

ẑ′ =

 0
0
1


and write this in terms of the body basis as

Aẑ′ =

 sinψ sin θ
cosψ sin θ

cos θ

 = x̂ sinψ sin θ + ŷ cosψ sin θ + ẑ cos θ

ϕ̇ẑ′ = x̂ϕ̇ sinψ sin θ + ŷϕ̇ cosψ sin θ + ẑϕ̇ cos θ

For the next term, θ̇ξ̂1 , we only need the final rotation to get to the body system, since ξ̂1 = ξ̂
′

1. Therefore,
we compute

Bθ̇ξ̂1 = θ̇Bξ̂
′

1

= θ̇

 cosψ
− sinψ

0

 = x̂θ̇ cosψ − ŷθ̇ sinψ

Finally, ψ̇ẑ is already in the body frame. Adding these, we have

ω = ϕ̇ẑ′ + θ̇ξ̂1 + ψ̇ẑ

=
(
ϕ̇ sinψ sin θ + θ̇ cosψ

)
x̂ +

(
ϕ̇ cosψ sin θ − θ̇ sinψ

)
ŷ +

(
ψ̇ + ϕ̇ cos θ

)
ẑ

4.1 Action functional for rigid body motion
We are now in a position to write the Lagrangian and action for a rigid body. In terms of Euler coordinates,
the kinetic energy is

T =
1
2
Iijωiωj

Substituting for the angular velocity in the principal axis frame this becomes

T =
1
2
I1

(
ϕ̇ sinψ sin θ + θ̇ cosψ

)2

+
1
2
I2

(
ϕ̇ cosψ sin θ − θ̇ sinψ

)2

+
1
2
I3

(
ψ̇ + ϕ̇ cos θ

)2

We may also have the kinetic energy of the center of mass.
For a slowly changing force field, we may write the potential as a function of the center of mass only, but

if there is a gradient or the forces are applied at specific points of the rigid body, there may be torques as
well. If the body is in a gravitational field, the potential is found by integrating

dV = −dmg (r) · dx

where g (x) is the local gravitational acceleration. For a uniform gravitational field, g = −gk is constant so´
g (r) · dx = g · x

dV = −
(
ρd3x

)
g · x

V = −g ·
ˆ
ρxd3x

= −Mg ·R
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since the center of mass is defined as
R =

1
M

ˆ
ρxd3x

We now apply these considerations to the case of a rigid body symmetric about one axis, with one point
fixed: tops.

4.2 Symmetric body with torque: tops
Now suppose the rotationally symmetric body rests on one point of the symmetry axis, like a top spinning
on a tabletop. We take this point as fixed. Then, unless the top is perfectly vertical, there is a torque acting,
produced by gravity acting at the center of mass. If the center of mass is a distance l above the fixed tip,
then the potential is

V = Mgl cos θ

Taking the z-axis as the symmetry axis, we have I1 = I2, and the first two terms of the kinetic energy
simplify considerably. The cross terms cancel and the sums of squares combine to give

1
2
I1

((
ϕ̇ sinψ sin θ + θ̇ cosψ

)2

+
(
ϕ̇ cosψ sin θ − θ̇ sinψ

)2
)

=
1
2
I1

(
ϕ̇2 sin2 θ + θ̇2

)
Then the action becomes

S =
ˆ
dt

(
1
2
I1

(
ϕ̇2 sin2 θ + θ̇2

)
+

1
2
I3

(
ψ̇ + ϕ̇ cos θ

)2

−Mgl cos θ
)

We first look for conserved quantities. Two angles, ϕ and ψ, are cyclic, so their conjugate momenta are
conserved:

pϕ =
∂L

∂ϕ̇

= I1ϕ̇ sin2 θ + I3

(
ψ̇ + ϕ̇ cos θ

)
cos θ

= ϕ̇
(
I1 sin2 θ + I3 cos2 θ

)
+ I3ψ̇ cos θ

and

pψ =
∂L

∂ψ̇

= I3

(
ψ̇ + ϕ̇ cos θ

)
= I3ω3

The energy provides a third constant of the motion since ∂L
∂t = 0. Since the Lagrangian is quadratic in the

velocities, we have E = T + V ,

E =
1
2
I1

(
ϕ̇2 sin2 θ + θ̇2

)
+

1
2
I3

(
ψ̇ + ϕ̇ cos θ

)2

+Mgl cos θ

=
1
2
I1

(
ϕ̇2 sin2 θ + θ̇2

)
+
p2
ψ

2I3
+Mgl cos θ

To solve, we first eliminate ψ̇,
ψ̇ =

pψ
I3
− ϕ̇ cos θ

12



then substitute this into pϕ,

pϕ = ϕ̇
(
I1 sin2 θ + I3 cos2 θ

)
+ I3

(
pψ
I3
− ϕ̇ cos θ

)
cos θ

= ϕ̇
(
I1 sin2 θ + I3 cos2 θ

)
+ pψ cos θ − I3ϕ̇ cos2 θ

= ϕ̇I1 sin2 θ + pψ cos θ

so that we may also solve for ϕ̇. This gives

ϕ̇ =
pϕ − pψ cos θ
I1 sin2 θ

Finally, we use the energy to express θ as an integral,

E =
1
2
I1

(
ϕ̇2 sin2 θ + θ̇2

)
+
p2
ψ

2I3
+Mgl cos θ

=
1
2
I1

((
pϕ − pψ cos θ
I1 sin2 θ

)2

sin2 θ + θ̇2

)
+
p2
ψ

2I3
+Mgl cos θ

=
1
2
I1θ̇

2 +
(pϕ − pψ cos θ)2

2I1 sin2 θ
+
p2
ψ

2I3
+Mgl cos θ

We may drop the constant term, p2ψ
2I3

. Then, solving for θ̇ to integrate,

t =
ˆ

dθ√
2E
I1
− (pϕ−pψ cos θ)2

I21 sin2 θ
− 2Mgl

I1
cos θ

=
ˆ

sin θdθ√
2E
I1

sin2 θ − 1
I21

(pϕ − pψ cos θ)2 − 2Mgl
I1

sin2 θ cos θ

or, setting x = cos θ,

t = −
ˆ

dx√
2E
I1

(1− x2)− 1
I21

(pϕ − pψx)2 − 2Mgl
I1

(x− x3)

The cubic in under the root makes this difficult, but it can be expressed in terms of elliptic integrals or
numerically integrated. The resulting θ (t) then allows us to integrate to find ϕ (t) and ψ (t).

A simpler way to approach the qualitative behavior is to view the energy as that of a 1-dimensional
problem with an effective potential

Veff =
(pϕ − pψ cos θ)2

2I1 sin2 θ
+Mgl cos θ

where we again drop the irrelevant constant, p2ψ
2I3

.
To explore the motion in this potential, again set x = cos θ. Then

Veff =
(pϕ − pψx)2

2I1 (1− x2)
+Mglx

This has extrema when

0 =
dVeff
dx

13



=
−2pψ (pϕ − pψx)

2I1 (1− x2)
− (pϕ − pψx)2

2I1 (1− x2)2
(−2x) +Mgl

=
1

2I1 (1− x2)2
(
−pψ2 (pϕ − pψx)

(
1− x2

)
+ 2x (pϕ − pψx)2 + 2I1Mgl

(
1− x2

)2)
0 = −2pψpϕ

(
1− x2

)
+ 2p2

ψx
(
1− x2

)
+ 2p2

ϕx− 4pϕpψx2 + 2p2
ψx

3 + 2I1Mgl
(
1− 2x2 + x4

)
0 = (2I1Mgl − 2pψpϕ) +

(
2p2
ϕ + 2p2

ψ

)
x+ (2pψpϕ − 4pϕpψ − 4I1Mgl)x2 +

(
2p2
ψ − 2p2

ψ

)
x3 + 2I1Mglx4

0 = (I1Mgl − pψpϕ) +
(
p2
ϕ + p2

ψ

)
x− (pϕpψ + 2I1Mgl)x2 + (I1Mgl)x4

0 = I1Mgl
(
1− x2

)2 − pψpϕ (1 + x2
)

+
(
p2
ϕ + p2

ψ

)
x

For x near 1, the first term may be neglected and we have approximately

0 = pψpϕ −
(
p2
ϕ + p2

ψ

)
x+ pψpϕx

2

x =
1

2pψpϕ

((
p2
ϕ + p2

ψ

)
±
√(

p2
ϕ + p2

ψ

)2

− 4p2
ψp

2
ϕ

)

x =
1

2pψpϕ

(
p2
ϕ + p2

ψ ±
(
p2
ϕ − p2

ψ

))
x =

pϕ
pψ
,
pψ
pϕ

In this case the top precesses in a nearly vertical position at a speed near its rate of spin.
Now consider small x, so we neglect the x4 term. Then

0 = (pψpϕ + 2I1Mgl)x2 −
(
p2
ϕ + p2

ψ

)
x− (I1Mgl − pψpϕ)

x =
1

2 (pψpϕ + 2I1Mgl)

((
p2
ϕ + p2

ψ

)
±
√(

p2
ψ + p2

ϕ

)2

+ 4 (pψpϕ + 2I1Mgl) (I1Mgl − pψpϕ)

)

x =
1

2 (pψpϕ + 2I1Mgl)

((
p2
ϕ + p2

ψ

)
±
√(

p2
ψ − p2

ϕ

)2

− 4I1Mglpψpϕ + 8I2
1M

2g2l2

)

This has real solutions as long as (
p2
ψ − p2

ϕ

)2
+ 8I2

1M
2g2l2 ≥ 4I1Mglpψpϕ

When the spin is fast, we have pψ � pϕ and may approximate

p4
ψ + 8I2

1M
2g2l2 ≥ 4I1Mglp2

ψ

pϕ
pψ

But then

0 ≤
(
p2
ψ − 2I1Mgl

)2
= p4

ψ − 4I1Mglp2
ψ + 4I2

1M
2g2l2

p4
ψ + 4I2

1M
2g2l2 ≥ 4I1Mglpψ

and since pϕ
pψ

< 1, there is always a solution. When the energy equals the potential at such a minimum,
the top will precess in a circle at a fixed angle θ. We may the consider perturbations around this solution.
Various solutions are depicted in Figure 5.9 of Goldstein, depending on the relative frequencies in the θ and
ϕ oscillations.
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4.2.1 Slowly precessing top

Consider the case when we have ψ̇ � θ̇ � ϕ̇. Then we may make the following approximations:

ψ̇ =
pψ
I3
− ϕ̇ cos θ

≈ pψ
I3

and

ϕ̇ =
pϕ − pψ cos θ
I1 sin2 θ

� ψ̇

while the energy is approximately

E =
1
2
I1

(
ϕ̇2 sin2 θ + θ̇2

)
+
p2
ψ

2I3
+Mgl cos θ

E′ =

(
E −

p2
ψ

2I3

)
≈ 1

2
I1θ̇

2 +Mgl cos θ

Then, solving for θ̇ to integrate, we find an elliptic integral:

t =
ˆ

dθ√
2E′

I1
− 2Mgl

I1
cos θ

=

√
2I1

E′ −Mgl
F

(
θ

2
;− 4Mgl

2E′ − 2Mgl

)

4.3 Gyroscopes
Gyroscopes are typically mounted on freely turning frames so that there is no external torque. In this case,
the potential vanishes and we have the simpler system

ψ̇ =
pψ
I3
− ϕ̇ cos θ

ϕ̇ =
pϕ − pψ cos θ
I1 sin2 θ

E =
1
2
I1

(
ϕ̇2 sin2 θ + θ̇2

)
+
p2
ψ

2I3

with effective potential

Veff =
(pϕ − pψ cos θ)2

2I1 sin2 θ

The extrema at
x = min

(
pϕ
pψ
,
pψ
pϕ

)
where the minimum selects for the value which gives x ≤ 1. There is therefore exactly one solution

t =
ˆ

dθ√
2E
I1
− (pϕ−pψ cos θ)2

I21 sin2 θ
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=
ˆ

sin θdθ√
2E
I1

sin2 θ − 1
I21

(pϕ − pψ cos θ)2

=
ˆ

I1dx√(
2I1E − p2

ϕ

)
+ 2pϕpψx−

(
2I1E + p2

ψ

)
x2

This time the root is quadratic, and we may complete the square,

(
2I1E − p2

ϕ

)
+ 2pϕpψx−

(
2I1E + p2

ψ

)
x2 = −

√2I1E + p2
ψx−

pϕpψ√
2I1E + p2

ψ

2

+
p2
ϕp

2
ψ

2I1E + p2
ψ

+ 2I1E − p2
ϕ

Setting

ξ =
√

2I1E + p2
ψx−

pϕpψ√
2I1E + p2

ψ

dx =
dξ√

2I1E + p2
ψ

A2 =
p2
ϕp

2
ψ

2I1E + p2
ψ

+ 2I1E − p2
ϕ

Ω =
1
I1

√
2I1E + p2

ψ

we have
t =

I1√
2I1E + p2

ψ

ˆ
dξ√

A2 − ξ2

so we set
ξ = A sinα

and the integral is

t =
I1√

2I1E + p2
ψ

sin−1 ξ

A√
2I1E + p2

ψ cos θ − pϕpψ√
2I1E + p2

ψ

= A sin Ωt

cos θ =
pϕpψ

2I1E + p2
ψ

+
A√

2I1E + p2
ψ

sin Ωt

= cos θ0 + b sin Ωt

This displays nutation clearly: the tip angle of the gyroscope oscillates up and down around the angle θ0
with period Ω. From Ω = 1

I1

√
2I1E + p2

ψ we see that Ω may have any magnitude, depending on the size of
I1. Then, from

ϕ̇ =
pϕ − pψ cos θ
I1 sin2 θ

we see that the value of pϕ makes ϕ̇ independent of Ω. This means that the rate of precession and the rate
of nutation are independent of one another.

16


