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A rigid body is defined as one in which the distance between any two points in the body remains constant.
If we think of the body as made up of individual particles, the distances between any two of these particles
is fixed. We may equally well consider a continuum approximation. In either case the complete orientation
of the body requires six parameters. Beginning from an arbitrary origin, we may locate any one point, P1,
in the body by three coordinates. Picking any other point, P2, the distance d12 between them is fixed, so P2

lies on a sphere of radius d12 centered on P1, and we may specify the position of P2 on this sphere by giving
two angles. Finally, with the positions of P1 and P2 fixed, any third point P3 lies in a plane with P1 and
P2. Since this plane contains the line connecting P1 and P2, the only freedom in specifying P3 is a single
angle, specifying the orientation of this plane. We therefore require 3 + 2 + 1 parameters to fully specify the
position and orientation of a rigid body.

Fix an orthonormal coordinate system, with basis i, j,k, fixed in space, and a second set, i′, j′,k′, fixed in
the rigid body. Think of the origin of the second set as P1 so that the origins of these two systems separated
by the position vector R1 of the point P1. Now let P2 define the i′ the only remaining difference between
the basis vectors will be determined by the three angular variables required to specify P2, P3.

1 Change of basis
We now seek the relationship between two orthonormal bases with a common origin.

The first key fact is that the transformation is linear, and this is immdediate by the definition of a vector
basis. Given a set of basis vectors (i, j,k), every vector can be expanded as a linear combination

v = v1i + v2j + v3k

Since any other basis is comprised of vectors, the vectors of the new basis (i′, j′,k′) may be expanded in the
old:

i′ = a11i + a12j + a13k

j′ = a21i + a22j + a23k

k′ = a31i + a32j + a33k

and conversely,

i = b11i′ + b12j′ + b13k′

j = b21i′ + b22j′ + b23k′

k = b31i′ + b32j′ + b33k′

We consider two types of transformation: passive and active. A passive transformation is one in which
any given vector remains fixed while we transform the basis. An active transformation is one in which we
leave the basis fixed, but transform all vectors. Thus, for a passive transformation and an arbitrary vector
v, we expand in each basis:

v = v1i + v2j + v3k

= v′1i
′ + v′2j

′ + v′3k
′
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where the basis vectors are related as above. For an active transformation, we consider two vectors

v = v1i + v2j + v3k

v′ = v′1i + v′2j + v′3k

where the components are related by

v = v1i + v2j + v3k

v′ = v1i′ + v2j′ + v3k′

1.1 Einstein summation convention
All of this is much easier in index notation. Let the three basis vectors be denoted by êi, i = 1, 2, 3, so that

ê1 = î

ê2 = ĵ

ê3 = k̂

and similarly for ê
′

i. Then the basis transformations above may be written as

ê
′

i =
3∑

j=1

aij êj

êi =
3∑

j=1

bij ê
′

j

and the vector expansions as

v =
3∑

j=1

vj êj

It is easy to see that this will lead us to write
∑3

j=1 millions of times. The Einstein convention avoids this
by noting that when there is a sum there is also a repeated index – j, in the cases above. Also, we almost
never repeat an index that we do not sum, so we may drop the summation sign. Thus,

3∑
j=1

aij êj =⇒ aij êj

3∑
j=1

bij ê
′

j =⇒ bij ê
′

j

3∑
j=1

vj êj =⇒ vj êj

The repeated index is called a dummy index, and it does not matter what letter we choose for it,

vj êj = vkêk

as long as we do not use an index that we have used elsewhere in the same expression. Thus, in the
basis change examples above, we cannot use i as the dummy index because it is used to distinguish three
independent equations:

ê
′

1 = a1j êj

ê
′

2 = a2j êj

ê
′

3 = a3j êj
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Such an index is called a free index. Free indices must match in every term of an expression.
Since the basis is orthonormal, we know that the dot product is given by

êi · êj = δij

where δij is the Kronecker delta, equal to 1 if i = j and to 0 if i 6= j. Notice that the expression above
represents nine separate equations. If we repeat the index, we have a single equation

êk · êk = δkk

= 3

Be sure you understand why the result is 3.
We can find the relationship between the matrices aij and bij , since, substituting one basis change into

the other,

ê
′

i = aij êj

= aij

(
bjkê

′

k

)
= aijbjkê

′

k

Taking the dot product with ê
′

m (notice that we cannot use i, j or k), we have

ê
′

i = aijbjkê
′

k

ê
′

m · ê
′

i = ê
′

m ·
(
aijbjkê

′

k

)
δmi = aijbjkê

′

m · ê
′

k

= aijbjkδmk

= aijbjm

and since δmi = δim is the identity matrix, 1, this shows that

AB = 1

so that the matrix B with components bij is inverse to A,

B = A−1

1.2 Passive transformation
Consider a passive transformation from êj to ê

′

i. Substituting for the relationship between the basis vectors,
we have

v′iê
′

i = viêi

= vi

(
bij ê

′

j

)
= (vibij) ê

′

j

Continuing with the passive transformation, we take the dot product of both sides of our equation with
each of the three basis vectors, ê

′

k:

v
′

iê
′

i · ê
′

k = (vibij) ê
′

j · ê
′

k

v
′

iδik = vibijδjk

v
′

k = vibik
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1.3 Active transformation
Now consider an active rotation of a vector v to a new vector v′. To see clearly what is happening, first
suppose we have two bases, êi, and ê

′

i which differ only by a rotation around the z axix through an angle θ,

i′ = i cos θ + j sin θ
j′ = −i sin θ + j cos θ
k′ = k

so that

aij =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


Now, suppose we want v lies in the x-direction and we want v′ to be rotated by an angle θ. Then we have

v = vi

v′ = vi′

= v (i cos θ + j sin θ)
= (iv cos θ + jv sin θ)

so the components of v′ in the unprimed basis are

v
′

i = (v cos θ, v sin θ, 0)

or, in terms of aij ,
v

′

i = vjaji

This is the general relationship between v and v′ since in general, if

ê
′

i = aij êj

and we reqire

v = viêi

v′ = viê
′

i

= v′iêi

it follows that

v
′

iêi = viê
′

i

v
′

iêi = viaij êj

v
′

k = viaik

Notice that the transformation law is exactly inverse to the transformation of the basis.

1.4 Transpose
Let A have components aij . Then the transpose of A, called At, has components aji:

[A]ij = aij[
At
]
ij

= aji
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For our active transformation, define the transformation O by

O = At

where A is our active transformation matrix,

v
′

k = viaik

Then we have

v
′

k = vi [O]ki

= [O]ki vi

and this is the usual form of transformation, with the vector on the right. We may also write this as

v′ = Ov

2 Orthogonal transformations

2.1 Defining property
The squared length of a vector is given by taking the dot product of a vector with itself,

v2 = v · v

An orthogonal transformation is a linear transformation of a vector space that preserves lengths of vectors.
This defining property may therefore be written as a linear transformation,

v′ = Ov

such that
v′ · v′ = v · v

Write this definition in terms of components using index notation. Setting the components of the transfor-
mation to [O]ij = Oij

v
′

i = Oijvj

we have

v′ · v′ = v · v
v

′

iv
′

i = vivi

(Oijvj) (Oikvk) = vivi

Notice that we change the name of the dummy indices so that we never have more than two indices repeated.
Each term in the expression (Oijvj) (Oikvk), for each value of i, j, k is just a real number, so we may rearrange
the terms in any order we like. We may also write the dot product as a double sum, vivi = δjkvjvk. Then

vivi = OijvjOikvk

δjkvjvk = OijOikvjvk

or
0 = (OijOik − δjk) vjvk

To go further we need to derive a useful general result. Suppose Aij = −Aji are the components of any
antisymmetric matrix, and Sij = Sji are the components of an arbitrary symmetric matrix. Consider the
trace of the product,

tr (AS)
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Since the product is given by AijSjk, its trace is found by setting k = i and summing,

AijSji

We can evaluate this, just from the symmetries,

AijSji = AijSij

= −AjiSij

Since dummy indices can be named arbitrarily, we may write AjiSij = AijSji, giving

AijSji = −AjiSji

2AijSji = 0
AijSji = 0

Therefore, the full contraction of a symmetric object and and antisymmetric always vanishes.
Returning to our defining property of orthogonal transformations,

0 = (OijOik − δjk) vjvk

and recognizing that the matrix
Mij = vivj

is symmetric but otherwise arbitrary, we see that we can make no claim about the antisymmetric part of
(OijOik − δjk), since such a contraction vanishes identically in any case. What we can conclude is that
the contraction of (OijOik − δjk) with the arbitrary symmetric matrix vjvk requires the vanishing of the
symmetric part,

(OijOik − δjk) + (OikOij − δkj) = 0

This is enough, because

OijOik = OikOij

δjk = δkj

and we have

OijOik − δjk = 0
OijOik = δjk

and since the components of Ot are just [Ot]ij = Oji,

Ot
jiOik = δjk

OtO = 1

and we see that the defining property of an orthogonal transformation is that the transpose equal the inverse:

Ot = O−1

2.2 Infinitesimal generators
There are two useful very ways to write the components of a 3-dimensional vector space. The first is as the
usual real triples,

v = (v1, v2, v3)
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while the second is as linear combinations of traceless, Hermitian 2× 2 matrices,

v = v1σ1 + v2σ2 + v3σ3

= viσi

where σi are the three Pauli matrices,

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ2 =

(
1 0
0 −1

)
Prove, as an exercise, that these are the only traceless, Hermitian 2 × 2 matrics. This means that there
is a one to one correspondence between 2-dimensional traceless Hermitian matrics and 3-dimensional real
vectors,

v = viσi

=
(

v3 v1 − iv2
v1 + iv2 −v3

)
Notice that linear combinations of these matrices remain traceless and Hermitian. The squared length of
the vector v may be written as the negative of the determinant,

v2 = −det v

= −det
(

v3 v1 − iv2
v1 + iv2 −v3

)
= −

[
−v2

3 − (v1 + iv2) (v1 − iv2)
]

=
(
v2
1 + v2

2 + v2
3

)
These facts give us two ways to describe orthogonal transformations. For the usual real representation

of vectors, we have already seen that a real, linear transformation satisfying Ot = O−1 is an orthogonal
transformation. For the matrix representation, we require a similarity transformation,

v′ = UvU−1

which preserves three properties:

1. Vanishing trace,
tr (v′) = tr

(
UvU−1

)
= 0

2. Hermitian,

v′† =
(
UvU−1

)†
= U−1†v†U†

= U−1†vU†

3. Determinant,
det v′ = det v

For both of these representations, the conditions on the components, while algebraic, are complicated.
Fortunately, we can linearize the conditions and still recover the full form of the transformations. We
consider both representations.
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2.3 SO(3): The Special (i.e., det O = 1) Orthogonal group in 3 dimensions
For the real, 3-dimensional representation of the rotations, we require

Ot = O−1

Notice that the identity satisfies this condition, so we may consider linear transformations near the identity
which also satisfy the condition. Let

O = 1 + ε

where [ε]ij = εij are all small, |εij | � 1 for all i, j. Keeping only terms to first order in εij , we have:

Ot = 1 + εt

O−1 = 1− ε

where we see that we have O−1 right by computing

OO−1 = (1 + ε) (1− ε)
= 1− ε2

≈ 1

correct to first order in ε. Now we impose our condition,

Ot = O−1

1 + εt = 1− ε
εt = −ε

so that the matrix ε must be antisymmetric.
Next, we write the most general antisymmetric 3×3 matrix as a linear combination of a convenient basis,

ε = wiJi

= w1

 0 0 0
0 0 1
0 −1 0

+ w2

 0 0 −1
0 0 0
1 0 0

+ w3

 0 1 0
−1 0 0
0 0 0


=

 0 w2 −w3

−w2 0 w1

w3 −w1 0


Notice that the components of the three matrices Ji are neatly summarized by

[Ji]jk = εijk

where εijk is the totally antisymmetric Levi-Civita tensor. The matrices Ji are called the generators of the
transformations.

Knowing the generators is enough to recover an arbitrary rotation. Starting with

O = 1 + ε

we may apply O repeatedly, taking the limit

O (θ) = lim
n−→∞

On

= lim
n−→∞

(1 + ε)n

= lim
n−→∞

(1 + wiJi)
n

8



where the limit is taken in such a way that if w is the length of the infinitesmal vector wi, so that wi = wni,
where ni is a unit vector, then

lim
n−→∞

nw = θ

where θ is finite. Using the binomial expansion, (a+ b)n =
∑n

k=0
n!

k!(n−k)!a
n−kbk we have

lim
n−→∞

On = lim
n−→∞

(1 + wiJi)
n

= lim
n−→∞

n∑
k=0

n!
k! (n− k)!

(1)n−k (wiJi)
k

= lim
n−→∞

n∑
k=0

n (n− 1) (n− 2) · · · (n− k + 1)
k!

1
nk

((nw)niJi)
k

= lim
n−→∞

n∑
k=0

n
n

(
n−1

n

) (
n−2

n

)
· · ·
(

n−k+1
n

)
k!

(θniJi)
k

=
∞∑

k=0

1
k!

(θniJi)
k

≡ exp (θniJi)

We define the exponential of a matrix by the power series for the exponential, applied using powers of the
matrix.

To find the form of a general rotation, we now need to find powers of niJi. This turns out to be
straightforward:

[niJi]jk = niεijk[
(niJi)

2
]

mn
= (niεimk) (njεjkn)
= ninjεimkεjkn

= −ninj (δijδmn − δinδjm)
= − (ninjδij) δmn + nmnn

= nmnn − δmn[
(niJi)

3
]

mn
= (nmnk − δmk)niεikn

= nmnkniεikn − δmkniεikn

= −niεimn

= − [niJi]mn

The powers come back to niJi with only a sign change, so we can divide the series into even and odd p This
is the matrix for a rotation through an angle θ around an axis in the direction of n.

We can now compute the exponential explicitly:

[O (θ, n̂)]mn = [exp (θniJi)]mn

=

[ ∞∑
k=0

1
k!

(θniJi)
k

]
mn

=

[ ∞∑
l=0

1
(2l)!

(θniJi)
2l

]
mn

+

[ ∞∑
l=0

1
(2l + 1)!

(θniJi)
2l+1

]
mn

=

[
1 +

∞∑
l=1

1
(2l)!

(θniJi)
2l

]
mn

+

[ ∞∑
l=0

1
(2l + 1)!

(θniJi)
2l+1

]
mn
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= δmn +
∞∑

l=1

(−1)l

(2l)!
θ2l (δmn − nmnn) +

∞∑
l=0

(−1)l

(2l + 1)!
θ2l+1 [niJi]mn

= δmn + (cos θ − 1) (δmn − nmnn) + sin θ [niJi]mn

where we get (cos θ − 1) because the l = 0 term is missing from the sum.
To see what this means, let O act on an arbitrary vector v, and write the result in normal vector notation,

[O (θ, n̂)]mn vn = (δmn + (cos θ − 1) (δmn − nmnn) + sin θ [niJi]mn) vn

= δmnvn + (cos θ − 1) (δmnvn − nmnnvn) + sin θ [niJi]mn vn

= vm + (cos θ − 1) (vm − nm (nnvn)) + sin θεimnnivn

Now define the components of v parallel and perpendicular to the unit vector n:

v‖ = (v · n) n

v⊥ = v − (v · n) n

Therefore,

O (θ, n̂) v = v − (v − (v · n) n) + (v − (v · n) n) cos θ − sin θ (n× v)
= v‖ + v⊥ cos θ − sin θ (n× v)

This expresses the rotated vector in terms of three mutually perpendicular vectors, v‖,v⊥, (n× v). The
direction n is the axis of the rotation. The part of v parallel to n is therefore unchanged. The rotation takes
place in the plane perpendicular to n, and this plane is spanned by v⊥, (n× v). The rotation in this plane
takes v⊥ into the linear combination v⊥ cos θ− (n× v) sin θ, which is exactly what we expect for a rotation
of v⊥ through an angle θ. The rotation O (θ, n̂) is therefore a rotation by θ around the axis n̂.

2.4 SU(2): The Special (det U = 1) Unitary (U†=U−1) group in 2 dimensions
It turns out that all orthogonal groups (SO (n), rotations in n real dimensions) may be written as special
cases of rotations in a related complex space. For SO (3), it turns out that rotations in a complex, 2-
dimensional space work. To see why this is, we show that we can write a real, 3-dimensional vector as a
complex hermitian matrix. We establish this by first studying the Lorentz group, then finding the rotations
as a subgroup.

2.4.1 Lorentz transformations

First, notice that matrices form a vector space. We can add linear combinations of them to form new
matrices, and the same is true of hermitian matrices. Any real linear combination of hermitian matrices is
also hermitian, since for any real a, b and hermitian A,B we have

C = aA+ bB

C† = (aA+ bB)†

= (aA)† + (bB)†

= aA† + bB†

= aA+ bB

= C

Next, we notice that the space of 2-dim hermitian matrices is 4-dimensional. Let A be hermitian. Then

A =
(
α β
γ δ

)
= A†

=
(
ᾱ γ̄
β̄ δ̄

)
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so that α = ᾱ, δ = δ̄ and β = γ̄. We therefore may write

A =
(

t+ z x− iy
x+ iy t− z

)
= t

(
1 0
0 1

)
+ x

(
0 1
1 0

)
+ y

(
0 −i
i 0

)
+ z

(
1 0
0 −1

)
= t1 + x · σ

where we choose the identity and the Pauli matrices as a basis for the 4-dim space.
Now consider the determinant of A,

detA = det
(

t+ z x− iy
x+ iy t− z

)
= (t+ z) (t− z)− (x+ iy) (x− iy)
= t2 − z2 − x2 − y2

This is the proper length of a 4-vector in spacetime, which means that any transformation which preserves
the hermiticity and determinant of A is a Lorentz transformation.

It is now easy to write the Lorentz transformations. Since matrices transform by similarity transformation,
we consider any transformation of the form

A′ = LAL†

This is hermitian whenever A is and preserves the determinant provided

1 = detA′

= det
(
LAL†

)
= detLdetAdetL†

= detLdetL†

= |detL|2

so that detL = ±1. The positive determinant transformations preserve the direction of time and are
called orthochronos, forming the group SL (2, C), i.e. unit determinant (special), linear transformations in
2 complex dimensions.

2.4.2 Rotations as SU(2)

The rotation group is the subset of the Lorentz transformations which do not involve the time, t. We
therefore may look for those Lorentz transformations with t′ = t. Since we may write our 4-vector, before
and after, as

A = t1 + x · σ
A′ = t′1 + x′ · σ

we need the Lorentz transformations which leave the identity unchanged. Now consider an infinitesimal
Lorentz transformation, L = 1 + ε. It will be a rotation provided

(1 + ε) 1 (1 + ε)† = 1
1 + ε+ ε† +O

(
ε2
)

= 1

ε+ ε† = 0
ε† = −ε
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which means the generator must be anti-hermitian. A general anti-hermitian matrix may be written as

ε = i (a01 + a · σ)
ε† = −i (a01 + a · σ)

We must still require unit determinant. To do this, recall the methods of the previous sub-Section, in
which we showed that a general rotation is related to an infinitesimal rotation by

O = exp (wiJi)

where Ji are the infinitesimal generators. The same argument holds here, so for the Lorentz transformations.
Since the generators are given by the property

ε† = −ε

the infintesimal matrix ε is anti-hermitian, and we may write it as i times a general hermitian matrix,

ε = i (a01 + a · σ)
ε† = −i (a01 + a · σ)

A general rotation must therefore be of the form

U = exp (i (a01 + a · σ))

In this form we may check the determinant using the fact that when A = eB ,

detA = etrB

To have unit determinant we therefore demand

1 = detU
= exp (itr (a01 + a · σ))
= e2ia0

and set a0 = 1.
Finally, notice that

ε† = −ε

means that

A−1 = 1− ε
= 1 + ε†

= A†

so that the rotation group is SU (2), the group of unit determinant, unitary matrices in 2-dimensions.

2.4.3 The form of rotation matrices

Now compute the exponential for a rotation,

U = exp (ia · σ)

=
∞∑

k=0

1
k!

(ia · σ)k
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We need to compute powers of the Pauli matrices. For this it is helpful to have the product

σiσj = δij1 + iεijkσk

which you are invited to prove. Let a = an, where n is a unit vector. Then

(a · σ)2 = a2 (n · σ)2

= (niσi) (njσj)
= ninjσiσj

= ninj (δij1 + iεijkσk)
= ninjδij1 + iεijkninjσk

= a2 (n · n) 1 + i (n× n) · σ
= a21

Higher powers follow immediately,

(a · σ)2k+1 = a2k+1n · σ
(a · σ)2k = a2kn · σ

and the exponential becomes

U =
∞∑

k=0

1
k!

(ia · σ)k

=
∞∑

k=0

(−1)k

(2k)!
a2k (n · σ)2k + i

∞∑
k=0

(−1)k

(2k + 1)!
a2k+1 (n · σ)2k+1

= 1
∞∑

k=0

(−1)k

(2k)!
a2k + in · σ

∞∑
k=0

(−1)k

(2k + 1)!
a2k+1

= 1 cos a+ in · σ sin a

Now apply this to a 3-vector, written as
X = x · σ

We have

X ′ = x′ · σ
= U (x · σ)U†

= (1 cos a+ in · σ sin a) (x · σ) (1 cos a− in · σ sin a)
= (x · σ) cos a cos a+ i (n · σ) (x · σ) cos a sin a− i (x · σ) (n · σ) cos a sin a

+ (n · σ) (x · σ) (n · σ) sin a sin a
= (x · σ) cos a cos a+ inixj [σi, σj ] cos a sin a+ (n · σ) (x · σ) (n · σ) sin a sin a

Evaluating the products of Pauli matrices,

inixj [σi, σj ] = inixj (2iεijkσk)
= −2 (n× x) · σ

(n · σ) (x · σ) (n · σ) = (n · σ)xinj (δij1 + iεijkσk)
= (n · σ) ((x · n) 1 + i (x× n) · σ)
= (x · n) (n · σ) + i (n · σ) (x× n) · σ
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= (x · n) (n · σ) + ini (x× n)j σiσj

= (x · n) (n · σ) + ini (x× n)j (δij1 + iεijkσk)
= (x · n) (n · σ) + in · (x× n) 1− (n× (x× n)) · σ
= (x · n) (n · σ)− (x (n · n)− n (x · n)) · σ
= 2 (x · n) (n · σ)− x · σ

Substituting,

x′ · σ = (x · σ) cos a cos a− 2 (n× x) · σ cos a sin a+ (2 (x · n) (n · σ)− x · σ) sin a sin a
= (x · σ) (cos a cos a− sin a sin a)− (n× x) · σ2 cos a sin a+ 2 (x · n) (n · σ) sin a sin a
= (x · σ) cos 2a− (n× x) · σ sin 2a+ (x · n) (n · σ) (1− cos 2a)
= [x cos 2a− n× x sin 2a+ (x · n) n (1− cos 2a)] · σ
= [(x− (x · n) n) cos 2a− n× x sin 2a+ (x · n) n] · σ

and equating coefficients,

x′ = (x− (x · n) n) cos 2a− n× x sin 2a+ (x · n) n

= x‖ + x⊥ cos 2a− (n× x⊥) sin 2a
= x‖ + x⊥ cos θ − (n× x⊥) sin θ

which is the same transformation as we derived from SO (3) once we identify 2a = θ. This means that as a
runs from 0 to 2π, the 3-dim angle only runs from 0 to π, and a complete cycle requires a to climb to 4π.

There are important things to be gained from the SU (2) representation of rotations. First, it is much
easier to work with the Pauli matrices than it is with 3 × 3 matrices. Although the generators in the 2-
and 3-dimensional cases are simple, the exponentials are not. The exponential of the Ji matrices is rather
complicated, while the exponential of the Pauli matrices may again be expressed in terms of the Pauli
matrices,

exp ian · σ = 1 cos a+ in · σ sin a

and this is a substantial simplification of calculations.
More importantly, there is a crucial physical insight. The transformations U act on our hermitian matrices

by a similarity transformation, but they also act on some 2-dimensional vector space. Denote a vector in

this space as ψ =
(
α
β

)
, so that the transformation of ψ is given by

ψ′ = Uψ

This transformation preserves the hermitian norm of ψ, since

ψ′†ψ′ =
(
ψ†U†

)
(Uψ)

= ψ†
(
U†U

)
ψ

= ψ†ψ

The complex vector ψ is called a spinor, with its first and second components being called “spin up” and “spin
down”. While spinors were not discovered physically until quantum mechanics, their existence is predictable
classically from the properties of rotations.
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