Problems 4c

November 7, 2012

Practice with index notation

Borrowed from Jackson, Classical Electrodynamics

1. Prove the following identities using index notation.

$$
\begin{aligned}
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c}) & =\mathbf{c} \cdot(\mathbf{a} \times \mathbf{b})=\mathbf{b} \cdot(\mathbf{c} \times \mathbf{a}) \\
\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) & =\mathbf{b}(\mathbf{a} \cdot \mathbf{c})-\mathbf{c}(\mathbf{a} \cdot \mathbf{b}) \\
(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d}) & =(\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d})-(\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c})
\end{aligned}
$$

2. The grad operator, ∇, is treated like a vector with components $\nabla_{i}=\frac{\partial}{\partial x_{i}}$, but it is also an operator. The thing to remember is that it always obeys the product rule. For example, for a function, f, and a vector, \mathbf{a},

$$
\begin{aligned}
\nabla \cdot(f \mathbf{a}) & =\nabla_{i}\left(f a_{i}\right) \\
& =\left(\nabla_{i} f\right) a_{i}+f \nabla_{i} a_{i} \\
& =(\nabla f) \cdot \mathbf{a}+f \nabla \cdot \mathbf{a}
\end{aligned}
$$

Prove the following two identities. Both of these require results involving symmetry:

$$
\begin{aligned}
\nabla \times \nabla f & =0 \\
\nabla \cdot(\nabla \times \mathbf{a}) & =0
\end{aligned}
$$

3. Prove the following identities:

$$
\begin{aligned}
\nabla \times(f \mathbf{a}) & =(\nabla f) \times \mathbf{a}+f \nabla \times \mathbf{a} \\
\nabla \times(\nabla \times \mathbf{a}) & =\nabla(\nabla \cdot \mathbf{a})-\nabla^{2} \mathbf{a} \\
\nabla(\mathbf{a} \cdot \mathbf{b}) & =(\mathbf{a} \cdot \nabla) \mathbf{b}+(\mathbf{b} \cdot \nabla) \mathbf{a}+\mathbf{a} \times(\nabla \times \mathbf{b})+\mathbf{b} \times(\nabla \times \mathbf{a}) \\
\nabla \cdot(\mathbf{a} \times \mathbf{b}) & =\mathbf{b} \cdot(\nabla \times \mathbf{a})-\mathbf{a} \cdot(\nabla \times \mathbf{b}) \\
\nabla \times(\mathbf{a} \times \mathbf{b}) & =\mathbf{a}(\nabla \cdot \mathbf{b})-\mathbf{b}(\nabla \cdot \mathbf{a})+(\mathbf{b} \cdot \nabla) \mathbf{a}-(\mathbf{a} \cdot \nabla) \mathbf{b}
\end{aligned}
$$

