Problem Set I.a

August 28, 2014

1. a. Let a linear force on a particle of mass, m, always lie in the x-direction so that

$$
\mathbf{F}=-k x \hat{\mathbf{i}}
$$

Allowing the motion to be 2-dimensional, find the motion, $\mathbf{x}(t)$, with the initial conditions $\left(t_{0}=0\right)$:

$$
\begin{aligned}
& \mathbf{x}(0)=x_{0} \hat{\mathbf{i}}+y_{0} \hat{\mathbf{j}} \\
& \mathbf{v}(0)=v_{0} \hat{\mathbf{j}}
\end{aligned}
$$

b. Let the initial conditions be

$$
\begin{aligned}
\mathbf{x}(0) & =x_{0} \hat{\mathbf{i}}+y_{0} \hat{\mathbf{j}} \\
\mathbf{v}(0) & =v_{0 x} \hat{\mathbf{i}}+v_{0 y} \hat{\mathbf{j}}
\end{aligned}
$$

Prove that the solutions are equivalent up to a different choice of the initial time t_{0} and a specific releationship between v_{0} and $\left(v_{0 x}, v_{0 y}\right)$.
2. Two dimensional oscillator

Now consider a radial Hooke's law force in 2-dimensions,

$$
\mathbf{F}=-k r \hat{\mathbf{r}}
$$

where the force is along the radial unit vector $\hat{\mathbf{r}}$ and depends on the distance from the origin, r, where

$$
\begin{aligned}
\hat{\mathbf{r}} & =\hat{\mathbf{i}} \cos \varphi+\hat{\mathbf{j}} \sin \varphi \\
r & =\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
\mathbf{r} & =r \hat{\mathbf{r}} \\
& =x \hat{\mathbf{i}}+y \hat{\mathbf{j}}
\end{aligned}
$$

Let the initial position and velocity (at $t_{0}=0$) be

$$
\begin{aligned}
& \mathbf{x}(0)=x_{0} \hat{\mathbf{i}} \\
& \mathbf{v}(0)=v_{0} \hat{\mathbf{j}}
\end{aligned}
$$

Find the motion, $\mathbf{x}(t)$.
3. Solve for the motion of a block of mass, m, down an inclined plane of angle θ, which is connected by a rope to a rolling cart of mass M. Neglect the moment of inertia of the wheels of the cart and the pulley. Assume friction between the block and the inclined plane of

$$
\mathbf{f}=-\mu \mathbf{N}
$$

where \mathbf{N} is the normal force exerted by the plane on the block.
4. We have proved that the angular momentum,

$$
\mathbf{L}=(\mathbf{r}(t)-\mathbf{R}) \times \mathbf{p}(t)
$$

of a single particle about a fixed position, \mathbf{R}, is related to the torque,

$$
\mathbf{N}=(\mathbf{r}(t)-\mathbf{R}) \times \mathbf{F}(t)
$$

by the equation

$$
\mathbf{N}=\frac{d \mathbf{L}}{d t}
$$

Now consider an isolated system of particles with positions \mathbf{r}_{i} and momenta \mathbf{p}_{i} where the force on the $i^{t h}$ particle by the $j^{t h}$ particle is $\mathbf{F}_{i j}$. Assume Newton's $3^{r d}$ Law holds, so that

$$
\begin{aligned}
\mathbf{F}_{j i} & =-\mathbf{F}_{i j} \\
\mathbf{F}_{i i} & =0
\end{aligned}
$$

Assume that the force between any two of the particles is a central force, i.e., it lies along the vector, $\mathbf{r}_{i}(t)-\mathbf{r}_{j}(t)$, between the two particles.

The angular momentum of the $i^{t h}$ particle is then

$$
\mathbf{L}_{i}=\left(\mathbf{r}_{i}(t)-\mathbf{R}\right) \times \mathbf{p}_{i}(t)
$$

with the torque on the $i^{t h}$ particle produced by the $j^{t h}$ given by

$$
\mathbf{N}_{i j}=\left(\mathbf{r}_{i}(t)-\mathbf{R}\right) \times \mathbf{F}_{i j}(t)
$$

The total torque on the $i^{t h}$ particle

$$
\mathbf{N}_{i}=\sum_{j=1}^{N}\left(\mathbf{r}_{i}(t)-\mathbf{R}\right) \times \mathbf{F}_{i j}(t)
$$

therefore satisfies,

$$
\mathbf{N}_{i}=\frac{d \mathbf{L}_{i}}{d t}
$$

Show that the total angular momentum of the system,

$$
\mathbf{L}_{t o t}=\sum_{i=1}^{N} \mathbf{L}_{i}
$$

is conserved.

