
Problems

October 7, 2014

1. By finding the equation of motion, show that the Lagrangian

L =
1

12
m2ẋ4 +

1

2
kmẋ2x2 − 1

4
k2x4

describes the 1-dimensional simple harmonic oscillator.

2. Reproduce the scaling argument to show used for the usual harmonic oscillator Lagrangian to show
that the period is given by

T = T0

√
m

k

for some constant T0.

3. Develop Noether’s theorem when the Lagrangian depends on the first n time derivatives of the position
xi (t),

S =

ˆ t2

t1

L
(
x,x(1),x(2), · · · ,x(n)

)
where x (or xi) is the position vector of a particle and x(k) = dkx

dtk
for any k (or xi(k)).

(a) Show that the equation of motion (extremum of S) is given by

3∑
i=1

n∑
k=0

(−1)k dk

dtk

(
∂L

∂xi(k)

)
= 0

(b) Now assume S has a symmetry ε (x), so that S [x+ ε] = S [x] for some specific continuous
variations, ε. Show that the quantity

I =

3∑
i=1

n∑
m=1

(−1)m−1 dm−1

dtm−1

∂L (x (λ))

∂xi(k)

dk−m

dtk−m
εi (x)

is conserved. Answer: For this extended case a general variation of the action is

δS [x (t)] ≡
ˆ t2

t1

(
∂L

∂xi
δxi + . . .+

∂L

∂xi(n)

dn

dtn
δxi

)
dt

=

ˆ t2

t1

n∑
k=0

∂L

∂xi(k)
δxi(k)dt

where the kth term is:

Ik =

ˆ t2

t1

3∑
i=0

∂L (x (λ))

∂xi(k)

dk

dtk
εi (x) dt
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Integrate this term by parts k times, keeping careful track of the surface terms. After writing the
surface term for the kth integral as a sum over m, sum over all k.

Ik =

3∑
i=0

ˆ t2

t1

∂L

∂xi(k)

dk

dtk
εidt

=

3∑
i=0

∂L

∂xi(k)

dk−1εi

dtk−1

∣∣∣∣∣
t2

t1

−
ˆ t2

t1

3∑
i=0

(
d

dt

∂L

∂xi(k)

)
dk−1

dtk−1
εidt

=

3∑
i=0

∂L

∂xi(k)

dk−1εi

dtk−1

∣∣∣∣∣
t2

t1

−
3∑

i=0

(
d

dt

∂L

∂xi(k)

)
dk−2εi

dtk−2

∣∣∣∣∣
t2

t1

+

ˆ t2

t1

3∑
i=0

(
d2

dt2
∂L

∂xi(k)

)
dk−2

dtk−2
εidt

=

k∑
m=1

3∑
i=0

(−1)m
(
dm−1

dtm−1

∂L

∂xi(k)

)
dk−mεi

dtk−m

∣∣∣∣∣
t2

t1

+

3∑
i=0

(−1)k
ˆ t2

t1

3∑
i=0

(
dk

dtk
∂L

∂xi(k)

)
εidt

Therefore, summing over k,

δS [x (t)] =

n∑
k=1

k∑
m=1

3∑
i=0

(
(−1)m dm−1

dtm−1

∂L

∂xi(k)

)
dk−mεi

dtk−m

∣∣∣∣∣
t2

t1

+
n∑

k=0

3∑
i=0

(−1)k
ˆ t2

t1

3∑
i=0

(
dk

dtk
∂L

∂xi(k)

)
εidt

Imposing the field equation, the final term vanishes. If we also set εi to the symmetry transfor-
mation, then δS vanishes. We are left with

n∑
k=1

k∑
m=1

3∑
i=0

(
(−1)m dm−1

dtm−1

∂L

∂xi(k)

)
dk−mεi

dtk−m

∣∣∣∣∣
t2

t1

= 0

Write this out for n = 3:

0 =

3∑
k=1

k∑
m=1

3∑
i=0

(
(−1)m dm−1

dtm−1

∂L

∂xi(k)

)
dk−mεi

dtk−m

∣∣∣∣∣
t2

t1

=

3∑
i=0

(
(−1)1 ∂L

∂xi(1)

)
εi

∣∣∣∣∣
t2

t1

+

2∑
m=1

3∑
i=0

(
(−1)m dm−1

dtm−1

∂L

∂xi(2)

)
d2−mεi

dt2−m

∣∣∣∣∣
t2

t1

+

3∑
m=1

3∑
i=0

(
(−1)m dm−1

dtm−1

∂L

∂xi(3)

)
d3−mεi

dt3−m

∣∣∣∣∣
t2

t1

=

3∑
i=0

(
− ∂L

∂xi(1)

)
εi

∣∣∣∣∣
t2

t1

+

3∑
i=0

(
− ∂L

∂xi(2)

)
dεi

dt

∣∣∣∣∣
t2

t1

+

3∑
i=0

d

dt

∂L

∂xi(2)
εi

∣∣∣∣∣
t2

t1

+

3∑
i=0

(
− ∂L

∂xi(3)

)
d2εi

dt2

∣∣∣∣∣
t2

t1

+

3∑
i=0

(
d

dt

∂L

∂xi(3)

)
dεi

dt

∣∣∣∣∣
t2

t1

+

3∑
i=0

(
− d2

dt2
∂L

∂xi(3)

)
εi

∣∣∣∣∣
t2

t1

= −
3∑

i=0

(
d2

dt2
∂L

∂xi(3)
− d

dt

∂L

∂xi(2)
+

∂L

∂xi(1)

)
εi

∣∣∣∣∣
t2

t1

+

3∑
i=0

(
d

dt

∂L

∂xi(3)
− ∂L

∂xi(2)

)
dεi

dt

∣∣∣∣∣
t2

t1

−
3∑

i=0

∂L

∂xi(3)

d2εi

dt2

∣∣∣∣∣
t2

t1

Since the limit times are arbitrary, the expression must vanish at any time, so that

I =

3∑
i=0

[
−

(
d2

dt2
∂L

∂xi(3)
− d

dt

∂L

∂xi(2)
+

∂L

∂xi(1)

)
εi +

(
d

dt

∂L

∂xi(3)
− ∂L

∂xi(2)

)
dεi

dt
− ∂L

∂xi(3)

d2εi

dt2

]
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is a constant of the motion.The equation of motion for n = 3 is

0 =

3∑
i=1

3∑
k=0

(−1)k dk

dtk

(
∂L

∂xi(k)

)

=

3∑
i=1

(
∂L

∂xi
− d

dt

∂L

∂xi(1)
+
d2

dt2

(
∂L

∂xi(2)

)
− d3

dt3

(
∂L

∂xi(3)

))

4. Suppose the Lagrangian does depend explicitly on time so that

∂L

∂t
6= 0

Show that energy is not conserved, but increases or decreases with time, depending on whether ∂L
∂t

is positive or negative. Therefore, explicit time dependence in a Lagrangian gives a way to introduce
dissipation or sources into a system. Since an isolated system has neither dissipation nor any outside
source of energy, the energy of an isolated system is conserved.

5. Find the Euler-Lagrange equation for the following action functionals:

(a) S [x] =
´
exp

(
αx2 + βv2

)
dt for constants α and β.

(b) S [x] =
´
f
(
x2v2

)
dt for any given function, f.

(c) S [x] = 1´
x·adt +

´
x · adt, where a = ẍ.

6. Apply the techniques for generalized Euler-Lagrange systems to the following fourth-order action:

S =

ˆ
Ldt

=

ˆ (
1

2
kmẋ2x2 − 1

4
k2x4 +

1

4
m2xẋ2ẍ+

1

4
m2x2ẍ2 +

1

4
m2x2ẋx(3)

)
dt

(a) Find the equation of motion
(b) Find the conserved energy. Answer: Conservation of energy follows from ∂L

∂t = 0. For this case
this holds. To find the form of the energy, write the total time derivative of L,

dL

dt
=
∂L

∂x
x(1) +

∂L

∂x(1)
x(2) +

∂L

∂x(2)
x(3) +

∂L

∂x(3)
x(4)

The equation of motion from problem 3 is

0 =
∂L

∂x
− d

dt

∂L

∂x(1)
+
d2

dt2

(
∂L

∂x(2)

)
− d3

dt3

(
∂L

∂x(3)

)
so we may replace the first term, and rearrange,

dL

dt
= −

(
− d

dt

∂L

∂x(1)
+
d2

dt2

(
∂L

∂x(2)

)
− d3

dt3

(
∂L

∂x(3)

))
x(1) +

∂L

∂x(1)
x(2) +

∂L

∂x(2)
x(3) +

∂L

∂x(3)
x(4)

=

(
d

dt

∂L

∂x(1)
x(1) +

∂L

∂x(1)
x(2)

)
− d2

dt2

(
∂L

∂x(2)

)
x(1) +

∂L

∂x(2)
x(3) +

d3

dt3

(
∂L

∂x(3)

)
x(1) +

∂L

∂x(3)
x(4)

=
d

dt

(
∂L

∂x(1)
x(1)

)
−
[
d

dt

(
d

dt

(
∂L

∂x(2)

)
x(1)

)
−
(
d

dt

(
∂L

∂x(2)

)
x(2)

)]
+

∂L

∂x(2)
x(3) +

d3

dt3

(
∂L

∂x(3)

)
x(1) +

∂L

∂x(3)
x(4)
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=
d

dt

(
∂L

∂x(1)
x(1)

)
− d

dt

(
d

dt

(
∂L

∂x(2)

)
x(1)

)
+

(
d

dt

(
∂L

∂x(2)

)
x(2) +

∂L

∂x(2)
x(3)

)
+
d3

dt3

(
∂L

∂x(3)

)
x(1) +

∂L

∂x(3)
x(4)

=
d

dt

(
∂L

∂x(1)
x(1)

)
− d

dt

(
d

dt

(
∂L

∂x(2)

)
x(1)

)
+
d

dt

(
∂L

∂x(2)
x(2)

)
+

[
d

dt

(
d2

dt2

(
∂L

∂x(3)

)
x(1)

)
− d2

dt2

(
∂L

∂x(3)

)
x(2)

]
+

∂L

∂x(3)
x(4)

=
d

dt

(
∂L

∂x(1)
x(1)

)
− d

dt

(
d

dt

(
∂L

∂x(2)

)
x(1)

)
+
d

dt

(
∂L

∂x(2)
x(2)

)
+
d

dt

(
d2

dt2

(
∂L

∂x(3)

)
x(1)

)
−
[
d

dt

(
d

dt

(
∂L

∂x(3)

)
x(2)

)
− d

dt

(
∂L

∂x(3)

)
x(3)

]
+

∂L

∂x(3)
x(4)

=
d

dt

(
∂L

∂x(1)
x(1)

)
− d

dt

(
d

dt

(
∂L

∂x(2)

)
x(1)

)
+
d

dt

(
∂L

∂x(2)
x(2)

)
+
d

dt

(
d2

dt2

(
∂L

∂x(3)

)
x(1)

)
− d

dt

(
d

dt

(
∂L

∂x(3)

)
x(2)

)
+

(
d

dt

(
∂L

∂x(3)

)
x(3) +

∂L

∂x(3)
x(4)

)
=

d

dt

[
∂L

∂x(1)
x(1) −

d

dt

(
∂L

∂x(2)

)
x(1) +

∂L

∂x(2)
x(2) +

d2

dt2

(
∂L

∂x(3)

)
x(1) −

d

dt

(
∂L

∂x(3)

)
x(2) +

∂L

∂x(3)
x(3)

]
From this we see that

E ≡ ∂L

∂x(1)
x(1) −

d

dt

(
∂L

∂x(2)

)
x(1) +

∂L

∂x(2)
x(2) +

d2

dt2

(
∂L

∂x(3)

)
x(1)

− d

dt

(
∂L

∂x(3)

)
x(2) +

∂L

∂x(3)
x(3) − L

=

(
∂L

∂x(1)
− d

dt

(
∂L

∂x(2)

)
+
d2

dt2

(
∂L

∂x(3)

))
x(1)

+

(
∂L

∂x(2)
− d

dt

(
∂L

∂x(3)

))
x(2) +

∂L

∂x(3)
x(3) − L

is conserved.

7. Consider the 3-dimensional action

S =

ˆ (
1

2
mẋ2 −mgz

)
dt

where x = (x, y, z) .

(a) Show that there are four symmetries of S.
(b) Find the four conserved quantities.

8. Consider the action functional for a pendulum,

S =
1

2

ˆ (
ml2ϕ̇2 +mglϕ2

)
dt
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Find all rescalings of the parameters and coordinates (m, g, l, ϕ, t) which leave S changed by no more
than an overall constant. Use these rescalings to show that the period of the motion is proportional to√

l
g .

9. The action functional

S =

ˆ t2

t1

(
1

2
mẋ2 − K√

x2

)
dt

Use a scaling argument to derive Kepler’s law relating the period and a characteristic length of the
orbit.

10. Using Lagrange multipliers, find the motion of a block of mass m sliding down a frictionless plane
inclined at angle θ, and find the force of constraint (i.e., the force the plane exerts on the block). Then
work the inclined plane problem directly from Newton’s second law and check explicitly that the force
applied by the plane is

F i = mg cos θ (− sin θ, 0, cos θ)

11. Repeat the inclined plane problem with a moving plane, using Lagrange multipliers. Let the plane
move in the direction

vi = (v1, 0, v3)

Find the work done on the particle by the plane. For what velocities vi does the particle stay in the
same position on the plane?

12. A particle of mass m moves frictionlessly on the surface z = kρ2, where ρ =
√
x2 + y2 is the polar

radius. Let gravity act in the −z direction, F = −mgk. Use a Lagrange multiplier to impose the
constraint and find the motion of the system.

13. A ball moves frictionlessly on a horizontal tabletop. The ball of mass m is connected to a string of
length L which passes through a hole in the tabletop and is fastened to a pendulum of mass M. The
string is free to slide through the hole in either direction. Use Lagrange multipliers to impose the
constraints. Find the motion of the ball and pendulum.

14. Study the motion of a spherical pendulum: a negligably light rod of length L with a mass m attached
to one end. The remaining end is fixed in space. The mass is therefore free to move anywhere on the
surface of a sphere of radius L, under the influence of gravity, −mgk.

(a) Write the Lagrangian for the system, imposing any constraints with Lagrange multipliers.

(b) Identify any conserved quantities.

(c) Use the conservation laws and any needed equations of motion to solve for the motion. In partic-
ular study the following motions:

i. Motion confined to a vertical plane, of small amplitude.
ii. Motion confined to a vertical plane, of arbitrary amplitude.
iii. Motion confined to a horizontal plane.

(d) Beginning with your solution for motion in a horizontal plane, study small oscillations away from
the plane.
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