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There are important general properties of Euler-Lagrange systems based on the symmetry of the La-
grangian. The most important symmetry result is Noether’s Theorem, which we prove be;pw. We then
apply the theorem in several important special cases to find conservation of momentum, energy and angular
momentum.

1 Noether’s theorem for the Euler-Lagrange equation
In essence, Noether’s theorem states that when an action has a symmetry, we can derive a conserved quantity.
To prove the theorem, we need clear definitions of a symmetry and a conserved quantity.

Def: Conserved quantities We have shown that the action

S [x (t)] =

ˆ
C

L
(
xi, ẋi, t

)
dt

is extremal when xi (t) satisfies the Euler-Lagrange equation,

∂L

∂xi
− d

dt

∂L

∂ẋi
= 0 (1)

This condition guarantees that δS vanishes for all variations, xi (t) → xi (t) + δxi (t) which vanish at the
endpoints of the motion. Let xi (t) be a solution to the Euler-Lagrange equation, eq.(1) of motion. Then a
function of xi (t) and its time derivatives,

f
(
xi (t) , ẋi (t) . . . ,

)
is conserved if it is constant along the paths of motion,

df

dt

∣∣∣∣
xi(t)

= 0

Definition: Symmetry of the action Sometimes it is the case that δS vanishes for certain limited
variations of the path without imposing any condition at all. When this happens, we say that S has a
symmetry :

A symmetry of an action functional S [x] is a transformation of the path, xi (t)→ λi
(
xj (t) , t

)
that leaves

the action invariant,
S
[
xi (t)

]
= S

[
λi
(
xj (t) , t

)]
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regardless of the path of motion xi (t). In particular, when λi (x) represents a continuous transformation of
x1, we may expand the transformation infinitesimally, so that

xi → x′i = xi + εi (x)

δxi = x′i − xi = εi (x)

Since the infinitesimal transformation must leave S [x] invariant, we have

δεS = S
[
xi + εi (x)

]
− S

[
xi
]
= 0

whether x (t) satisfied the field equations or not. If an infinitesimal transformation is a symmetry, we may
apply arbitrarily many infinitesimal transformations to recover the invariance of S under finite transforma-
tions. Here λ(x) is a particular function of the coordinates. This is quite different from performing a general
variation – we are not placing any new demand on the action, just noticing that particular transformations
don’t change it. Notice that neither λi nor εi is required to vanish at the endpoints of the motion.

We are now in a position to prove Noether’s theorem.

Theorem (Noether): Suppose an action dependent on N independent functions xi (t), i = 1, 2, . . . , N
has a (Lie) symmetry so that it is invariant under

δεx
i = x′i − xi = εi (x)

where εi (x) are fixed functions of xi (t). We carefully distinguish between the symmetry variation δε and a
general variation δ. Then the quantity

I =
∂L (x (λ))

∂ẋi
εi (x)

is conserved.

Proof: The existence of a symmetry means that

0 ≡ δεS [x (t)]

≡
N∑
i=1

ˆ t2

t1

(
∂L (x (t))

∂xi
εi (x) +

(
∂L (x (t))

∂ẋi(n)

)
dεi (x)

dt

)
dt

Notice that δS vanishes identically because the action has a symmetry. No equation of motion has been
used. Integrating the second term by parts we have

0 =

ˆ (
∂L

∂xi
εi(x) +

d

dt

(
∂L

∂ẋi
εi(x)

)
− d

dt

(
∂L

∂ẋi

)
εi(x)

)
dt

=
∂L

∂ẋi
εi(x)

∣∣∣∣t2
t1

+

ˆ (
∂L

∂xi
− d

dt

(
∂L

∂ẋi

))
εi(x)dt

This expression vanishes for every path. Now suppose xi (t) is an actual classical path of the motion, that
is, one that satisfies the Euler-Lagrange equation,

∂L

∂xi
− d

dt

(
∂L

∂ẋi

)
= 0

1Technically, what we mean here is a Lie group of transformations, but the definition of a group lines up well with our
intuition of symmetry. Groups are sets closed under an operation which has an identity, inverses and is associative. For
symmetries, each transformation leaves the action invariant, so the combination of any two does as well, showing closure. The
identity is just no transformation at all, inverses are just undoing the transformation we’ve just done, and associativity is natural
if you can picture it – compounding three transformations ABC it doesn’t matter whether we find AB and then apply first C
then AB, or if we find BC and apply it, followed by A. It just means the symmetry transformation ABC is well-defined no
matter which way we compute it.
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Then for that classical path, the integrand vanishes and it follows that

0 = δS [x]

=
∂L

∂ẋi
εi (x (t))

∣∣∣∣t2
t1

= I (t2)− I (t1)

for any two end times, t1, t2. Therefore,
dI

dt
= 0

and
I =

∂L (x, ẋ)

∂ẋi
εi (x)

is a constant of the motion.

2 Conserved quantities in Euler-Lagrange systems
We begin this section with some definitions.

Def: Cyclic coordinate A coordinate, q, is cyclic if it does not occur in the Lagrangian, i.e.,

∂L

∂q
= 0

For example, in the spherically symmetric action

S [r, θ, ϕ] =

t2ˆ

t1

[
1

2
m
(
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

)
− V (r)

]
dt

all three velocities
(
ṙ, θ̇, ϕ̇

)
are present and the coordinates (r, θ) are present, but ∂L

∂ϕ = 0. Therefore, ϕ is
cyclic.

Def: Conjugate momentum The conjugate momentum, p, to any coordinate q is defined to be

p ≡ ∂L

∂q̇

For a single particle in any coordinate-dependent potential, V (x), the action may be written as

S [x] =

t2ˆ

t1

[
1

2
mẋ2 − V (x)

]
dt

so the momenta conjugate to the three coordinates xi are

pi =
∂L

∂ẋi
= mẋi

which is the familiar expression for the momentum of a particle.
Notice that velocity dependence of the potential changes this. We give the example of the Lorentz force

law,
F = q (E+ ẋ×B)

3



showing at the same time that we may use the velocity-dependent potential

qφ− qẋ ·A

where B = ∇×A. Check this:

S [x] =

t2ˆ

t1

[
1

2
mẋ2 − qφ+ qẋ ·A

]
dt

0 = δS [x] =

t2ˆ

t1

[
mẋ · δẋ− q

∑
i

∂φ

∂xi
δxi + qδẋ ·A+ qẋ ·

∑
i

∂A

∂xi
δxi

]
dt

0 =

t2ˆ

t1

[
−mẍ · δx− q

∑
i

∂φ

∂xi
δxi − qδx · Ȧ+ qẋ ·

∑
i

∂A

∂xi
δxi

]
dt

0 =
∑
i

t2ˆ

t1

[
−mẍi − q

∂φ

∂xi
− q dAi

dt
+ qẋ · ∂A

∂xi

]
δxidt

0 =
∑
i

t2ˆ

t1

−mẍi − q ∂φ
∂xi
− q ∂Ai

∂t
− q

∑
j

∂Ai

∂xj
ẋj + q

∑
j

ẋj
∂Aj

∂xi

 δxidt
0 =

∑
i

t2ˆ

t1

−mẍi − q( ∂φ
∂xi

+
∂Ai

∂t

)
+ q

∑
j

ẋj
(
∂Aj

∂xi
− ∂Ai

∂xj

) δxidt
0 =

∑
i

t2ˆ

t1

−mẍi + qEi + q
∑
j

ẋjεijkB
k

 δxidt
so that

mẍi = q

Ei +
∑
j

ẋjεijkB
k


mẍ = q (E+ ẋ×B)

In this case, differentiating

pj =
∂

∂ẋi

1
2
m
∑
j

ẋj ẋj − qφ+ q
∑
j

ẋjAj


= mẋj + qAj

so that the momentum conjugate to xi is
p = mẋ+ qA

2.1 Cyclic coordinates and conserved momentum
We have the following consequences of a cyclic coordinate.
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Theorem: Cyclic coordinates If a coordinate q is cyclic then

1. The system has translational symmetry, since the action is invariant under the translation

q → q + a

2. The momentum conjugate to q is conserved.

Proof: To prove the first result, simply notice that if

∂L

∂q
= 0

then L has no dependence on q at all. Therefore, replacing q by q + a does nothing to L, hence nothing to
the action. Equivalently, the variation of the action with respect to the infinitesimal symmetry (a→ ε) ,

δq = ε

δq̇ = 0

is

δS =

ˆ (
∂L

∂q
δq +

∂L

∂q̇
δq̇

)
dt

=

ˆ (
0 · δq + ∂L

∂q̇
· 0
)
dt

= 0

so the translation is a symmetry of the action.
For the second result, the Euler-Lagrange equation for the coordinate q immediately gives

0 =
∂L

∂q
− d

dt

(
∂L

∂q̇

)
= − d

dt

(
∂L

∂q̇

)
so that

p =
∂L

∂q̇

is conserved.

2.2 Translational invariance and conservation of momentum
Now consider full translational invariance. We look first at a single particle, then at many particles.

Suppose the action for a 1-particle system is invariant under arbitrary finite translations,

x̃i = xi + ai

or infinitesimally, letting ai → εi,
δxi = εi
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We may express the invariance of S under δxi = εi explicitly,

0 = δS

=
∑
i

ˆ t2

t1

(
∂L

∂xi
δxi +

∂L

∂ẋi
δẋi
)
dt

=
∑
i

ˆ t2

t1

(
∂L

∂xi
δxi +

d

dt

(
∂L

∂ẋi
δxi
)
− d

dt

(
∂L

∂ẋi

)
δxi
)
dt

=
∑
i

∂L

∂ẋi
εi

∣∣∣∣∣
t2

t1

+
∑
i

ˆ t2

t1

(
∂L

∂xi
− d

dt

(
∂L

∂ẋi

))
εidt

For a particle which satisfies the Euler-Lagrange equation, the final integral vanishes. Then, since t1 and t2
are arbitrary we must have

∂L

∂ẋi
εi = piε

i

conserved for all constants εi. Since εi is arbitrary, the momentum pi =
∂L
∂ẋi conjugate to xi is conserved as

a result of translational invariance.
Now consider an isolated system, i.e., a bounded system with potentials depending only on the relavite

positions, xa − xb of the N particles (a, b = 1, . . . , N). We may write the action for this system as

S [x] =

N∑
a=1

t2ˆ

t1

1

2
mẋ2

a −
∑
b 6=a

V (xa − xb)

 dt

Then shifting the entire system by the same vector a,

x̃a = xa − a

leaves S invariant since

x̃a − x̃b = (xa − a)− (xb − a) = xa − xb

˙̃xa = ẋa

Carrying out the symmetry variation of S,

0 = δS [x]

=

N∑
a=1

t2ˆ

t1

mẋa · δẋa −
∑
b6=a

∑
c,i

∂

∂xic
V (xa − xb) a

i

 dt
=

N∑
a=1

mẋa · δxa +

N∑
a=1

t2ˆ

t1

mẍa · δxa −
∑
b 6=a

∑
c

δxc ·∇cV (xa − xb)

 dt
=

N∑
a=1

mẋa · a+

N∑
a=1

t2ˆ

t1

mẍa −
∑
b 6=a

∑
c

∇cV (xa − xb)

 · adt
Imposing the equations of motion, the final integral vanishes and the constant vector a comes out of the
initial sum so that

a ·
N∑

a=1

mẋa = constant
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Since a is arbitrary, the total momentum

P ≡
N∑

a=1

mẋa

is conserved for an isolated system.
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