1 Why study Classical Mechanics?

Newton’s laws date back to 1687, when he published Philosophiae Naturalis Principia Mathematica, laying
out his laws of motion and universal gravitation. Now, over 300 years later, we understand the world in
terms of relativistic quantum field theory or even fundamental string. Classical mechanics is known to fail
in at least three ways. At distances smaller than %, we must use quantum mechanics or quantum field
theory to describe the motions and interactions of matter. Second, at velocities close to the speed of light we
must make relativistic corrections, working in a unified spacetime instead of Newton’s abstraction of ideal
Euclidan space and universal time. Finally, the law of universal gravitation has been replaced by general

relativity. Why then, study classical mechanics at all?

1.1 Range of applicability

One answer lies in the wide range of applicability. Planck’s constant /i is small, so quantum considerations
usually only become important for phenomena on the scale of atoms whose size is determined by % for
the orbiting electrons. Similarly, special relativity gives significant corrections only when objects move at a
substantial fraction of the speed of light. The fastest man-made object ever produced was not the Voyager
spacecraft (35,000 mi/hr) as is often claimed, but the solar probes Helios-A and Helios-B which reached
a maximum speed of 252,792 km/hr (see http://en.wikipedia.org/wiki/Helios (spacecraft) ). This is still

only 0.000234¢, with ¢ the speed of light, so the relativistic corrections (N ’c’—s are only a few parts in 108,

Interestingly, second place appears to be held by a nuclear powered manhole cover (nuclear testing, Pascal B,
gone wrong) (see http://savvyparanoia.com/the-fastest-man-made-object-ever-a-nuclear-powered-manhole-
cover-true/ ) which would have been traveling at about 237,500 mph. This still is only 2 = 2.2 x 1074,
These small corrections are important only for extremely fine measurements, where they are easily measured
by modern atomic clocks. Finally, general relativity is important for cosmology, precise orbit predictions in
planetary and satellite science, and the GPS system, but errors using Newtonian gravity are of order %% ,
where R is the distane from a mass M. This is of order 6.95 x 10~ near the surface of Earth.

Therefore, for sizes larger than atoms and smaller than the solar system, and ordinary velocities, classical
mechanics is an excellent approximation.

1.2 Mathematical techniques

A very important reason to study classical mechanics is that it provides a familiar, intuitive arena in which
to learn solution techniques. For example, if we rewrite Newton’s second law as the second-order differential
equation,
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where (xi, F l) for ¢ = 1,2,3 are the components of the position and force vectors, it has the same form as
the geodesic equation of general relativity,

F' (z,v,1)
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where o = 0, 1, 2,3 and the right side depends on I'},, (mﬁ) and the components of the velocity vector, u*.

A second example is provided by the Schrédinger equation, which is identical in many respects to a
classical diffusion equation.

= —I9 u'u”

1.3 First approximation

Because the corrections to Newtonian mechanics are so small, the Newtonian solution to problems is close
to the exact solution, and therefore makes a good place to start in making a perturbative approximation to
the full solution. Alternatively, if we have an exact solution in general relativity or quantum mechanics, we
may be able to make sense of it by comparing terms in the classical solution.



1.4 Intuition

We have a great deal of direct experience with the world, and the terms of classical mechanics line up well
with this experience. We can use this familiarity to guess how a system will behave. With more precise
theories, having a similar picture of what is going on becomes difficult.

2 Review of Newtonian Mechanics

Basic definitions

We define several important concepts. We picture the world as a 3-dimensional Euclidean space with points
labeled by triples of numbers, often simply the Cartesian (z,y, z), but others as well. Events are parameter-
ized by the passage of time, so a point particle is described by a curve

r(t) = (¢(),y(0),z@)
= (r(®),0(t),¢(1)
in whatever coordinates we choose, with boldface denoting a vector. Notice that the position vector r (¢) is

a dynamical variable, not a coordinate. As t varies, r () traces out a curve in space.
The time-rate-of-change of the position vector is called the velocity,

v = =0

— i (D)

and is tangent to this curve. Notice that for simplicity we will sometimes denote the time derivative with a
dot over the variable. The acceleration is the rate of change of velocity,
dv (t)

dt

a(t) =

Particles are characterized by a constant called the mass, m, which reflects their resistance to change of
velocity. Defining the momentum as the product

p=mv

we write Newton’s second law as
dp (t)
dt
The force, F, is to be taken intuitivelty and is determined by the particular problem. It is essentially
that effort which produces a change of momentum. For example, if we stretch a spring it has the ability to
move a mass attached to the end. Since this ability doubles if we double the stretch of the spring, we may
write the force of a spring as proportional to the difference between the location of its endpoints,

F =

Fspring = -k (I’2 - 1‘2)

where the spring constant, k, characterizes the strength of the spring. This form of force is Hooke’s Law.



There are many forces that have been identified:

0 Zero force
—k (ro —rp) Hooke's law
q(E+v xB) Lorentz force
N Normal force
—ulN Friction
Gjrv#f‘ Gravitation
_kQqq Coulomb'slaw

Once the forces on a particle have been identified, Newton’s second law becomes an ordinary, second order

differential equation
_d dr (t)
2F=g (m dt )

where the sum is over all forces on the particle. This means that two initial conditions are required to give
a unique solution to a problem. If the time starts at ¢ = ¢y, then the initial conditions may be taken as the
position and velocity at ¢,

ro = r(t)
Vo = V (to)
Conservation laws
We now develop three conservation laws.
Conservation of linear momentum
If no force acts, F = 0 and we have
dp (t
pt) _,
dt

Integrating gives
p (t) = po = mv (to)

The linear momentum is therefore constant; we say that p is conserved.

Conservation of angular momentum

We define the angular momentum of a particle at position r (¢), relative to a fixed position R, to be
L=(r(t)-R)xp

and the torque about the same location to be
N=(r({t)—-R)xF

Then taking the cross product of the relative position, r (t) — R, with Newton’s second law, we have

(r(t)-R)xF = (r(t)_R)XM

dt
= SR xp@) - (HE0-R))xp0)

- =



where we use the product rule on the right. Since

d dr(t) dR
o (r(t)—-R) = . dr
= v(t)—0

and with p (t) = mv (t), the right side becomes

GO -Rxp0) - (FEO-R)xp0 = FovOxmv)
dL
- w

since v (t) x v (t) = 0. We therefore have

dL
dt

It follows immediately that L is conserved if the torque vanishes.

Conservation of energy

Suppose the force on a particle is a function of particle position, F = F (r). Then we may integrate the
second law by taking the dot product with the velocity:

dp (1)
F = —
dt
dp
F. - .
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F.— = el
dt Y
F-dr = mv-dv

Integrating from the initial values to the values at a general time, ¢, we have

r(t) v(t)

/F-dr = m/v-dv
Vo
1

ro
= -—mv® — -mvy
= T-T
where we define the kinetic energy, T (t) = %mvz. In general, the integral on the left side depends on the

path of integration. Such a path-dependent integral is not a function, but is called instead a functional.
Along any path we define the work as

ra

W12:/F~dr

ry

so that the work is equal to the change in kinetic energy,
Wi=T1T2-T)

This is the work-energy theorem.



Let x (A\) be any curve in 3-space, and take it as the path of integration. Then the work is a functional,
denoted with square brackets, W [x (A)], where

Wix(\)] = /F-dx

dx
F.-—d\
/ d\

x(A)

Notice that any change in the curve may change the value of W; the value of W depends on the entire curve,
not just on a single point.
Suppose the result of integration is independent of path. Then the value of the integral depends only on
the endpoints, and we define the potential,
r
Vi(r)=- / F-dr
ro

Since the potential evaluated along any two paths, C7, C5 is the same, the difference of the integrals along

these paths must vanish
0 = /F~dr—/F-dr

Cs Cy

F - dr
Ca—C4

where Cy — C7 is the combined, closed loop up Cs and back down C;. Applying Stoke’s theorem, this
becomes

0 = 56 F-dr

C2—Cy
// (v xF) -nd*r
5

where S is any 2-dimensional surface with the curve Cy — C; as its boundary, and n is the unit normal to
S. Since the closed curve Cy — C1 is completely arbitrary, the surface S is as well. Tipping S in arbitrary
directions means that n is also arbitrary. Choosing S to be an infinitesmally small region near a point x, we
may approximate the surface integral arbitrarily well by

(v x F) - 1] (x) AS

where AS is the nonzero, infinitesimal area. This must vanish, and since the normal may be any direction,
the curl of the force must vanish,

VxF=0

Since the point x was arbitrary, the curl must vanish at every point. This is a sufficient condition for the
existence of a potential for F.

To show that it is also necessary, we invert the definition of V' to write the force as the gradient of the
potential,

F=-vV(r)

Then, whenever the force comes from a potential, its curl must vanish, since the curl of a gradient is always
Zero:

v xF -V x VV (r)

0



