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1 Phase space
Phase space is a dynamical arena for classical mechanics in which the number of independent dynamical
variables is doubled from n variables qi, i = 1, 2, . . . , n to 2n by treating either the velocities or the momenta
as independent variables. This has two important consequences.

First, the equations of motion become first order differential equations instead of second order, so that
the initial conditions is enough to specify a unique point in phase space. The means that, unlike the
configurations space treatment, there is a unique solution to the equtions of motion through each point.
This permits some useful geometric techniques in the study of the system.

Second, as we shall see, the set of transformations that preserve the equations of motion is enlarged.
In Lagrangian mechanics, we are free to use n general coordinates, qi, for our description. In phase space,
however, we have 2n coordinates. Even though transformations among these 2n coordinates are not com-
pletely arbitrary, there are far more allowed transformations. This large set of transformations allows us, in
principal, to formulate a general solution to mechanical problems via the Hamilton-Jacobi equation.

1.1 Velocity phase space
While we will not be using velocity phase space here, it provides some motivation for our developments in
the next Sections. The formal presentation of Hamiltonian dynamics begins in Section 1.3.

Suppose we have an action functional

S =
ˆ
L (qi, q̇j , t) dt

dependent on n dynamical variables, qi (t), and their time derivatives. We might instead treat L (qi, uj , t) as
a function of 2n dynamical variables. Thus, instead of treating the the velocities as time derivatives of the
position variables, (qi, q̇i) we introduce n velocities ui and treat them as independent. Then the variations
of the velocities δui are also independent, and we end up with 2n equations. We then include n constraints,
restoring the relationship between qi and q̇i,

S =
ˆ [

L (qi, uj , t) +
∑

λi (q̇i − ui)
]
dt

Variation of the original dynamical variables then results in

0 = δqS

=
ˆ (

∂L

∂qi
δqi + λiδq̇i

)
dt

=
ˆ (

∂L

∂qi
− λ̇i

)
δqidt
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so that
λ̇i =

∂L

∂qi

For the velocities, we find

0 = δuS

=
ˆ (

∂L

∂ui
− λi

)
δuidt

so that
λi =

∂L

∂ui

and finally, varying the Lagrange multipliers, λi, we recover the constraints,

ui = q̇i

We may eliminate the multipliers by differentiating the velocity equation

d

dt
(λi) =

d

dt

(
∂L

∂ui

)
to find λ̇i, then substituting for ui and λ̇i into the qi equation,

λ̇i =
d

dt

(
∂L

∂q̇i

)
d

dt

(
∂L

∂q̇i

)
=

∂L

∂qi

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0

and we recover the Euler-Lagrange equations. If the kinetic energy is of the form
∑n
i=1

1
2mu

2
i , then the

Lagrange multipliers are just the momenta,

λi =
∂L

∂ui
= mui

= mq̇i

1.2 Phase space
We can make the construction above more general by requiring the Lagrange multipliers to always be the
conjugate momentum. Combining the constraint equation with the equation for λi we have

λi =
∂L

∂q̇i

We now define the conjugate momentum to be exactly this derivative,

pi ≡
∂L

∂q̇i

Then the action becomes

S =
ˆ [

L (qi, uj , t) +
∑

piq̇i −
∑

piui

]
dt

=
ˆ [

L (qi, uj , t)−
∑

piui +
∑

piq̇i

]
dt
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For Lagrangians quadratic in the velocities, the first two terms become

L (qi, uj , t)−
∑

piui = L (qi, q̇, t)−
∑

piq̇i

= T − V −
∑

piq̇i

= − (T + V )

We define this quantity to be the Hamiltonian,

H ≡
∑

piq̇i − L (qi, q̇, t)

Then

S =
ˆ [∑

piq̇i −H
]
dt

This successfully eliminates the Lagrange multipliers from the formulation.
The term “phase space” is generally reserved for momentum phase space, spanned by coordinates qi, pj .

1.2.1 Legendre transformation

Notice that H is, by definition, independent of the velocities, since

H =
∑

pj q̇j − L

∂H

∂q̇i
=

∂

∂q̇i

∑
j

pj q̇j − L


=

∑
j

pjδij −
∂L

∂q̇i

= pi −
∂L

∂q̇i
≡ 0

Therefore, the Hamiltonian is a function of qi and pi only. This is an example of a general technique called
Legendre transformation. Suppose we have a function f , which depends on independent variables A,B and
dependent variables, having partial derivatives

∂f

∂A
= P

∂f

∂B
= Q

Then the differential of f is
df = PdA+QdB

A Legendre transformation allows us to interchange variables to make either P or Q or both into the
independent variables. For example, let g (A,B, P ) ≡ f − PA. Then

dg = df −AdP − PdA
= PdA+QdB −AdP − PdA
= QdB −AdP
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so that g actually only changes with B and P , g = g (B,P ). Similarly, h = f −QB is a function of (A,Q)
only, while k = − (f − PA−QB) has (P,Q) as independent variables. Explicitly,

dk = −df + PdA+AdP +QdB +BdQ

= AdP +BdQ

and we now have

∂f

∂P
= A

∂f

∂Q
= B

2 Hamilton’s equations
The essential formalism of Hamilton’s equation is as follows. We begin with the action

S =
ˆ
L (qi, q̇j , t) dt

and define the conjugate momenta

pi ≡
∂L

∂q̇i

and Hamiltonian
H (qi, pj , t) ≡

∑
pj q̇j − L (qi, q̇j , t)

Then the action may be written as

S =
ˆ [∑

pj q̇j −H (qi, pj , t)
]
dt

where qi and pj are now treated as independent variables.
Finding extrema of the action with respect to all 2n variables, we find:

0 = δqk
S

=
ˆ ((

∂
∑
j pj q̇j

∂q̇k

)
δq̇k −

∂H

∂qk
δqk

)
dt

=
ˆ ∑

j

pjδjkδq̇k −
∂H

∂qk
δqk

 dt

=
ˆ (

pkδq̇k −
∂H

∂qk
δqk

)
dt

=
ˆ (
−ṗk −

∂H

∂qk

)
δqkdt

so that
ṗk = −∂H

∂qk

and

0 = δpkS

=
ˆ ((

∂
∑
j pj q̇j

∂pk

)
δpk −

∂H

∂pk
δpk

)
dt
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=
ˆ (

q̇kδpk −
∂H

∂pk
δpk

)
dt

=
ˆ (

q̇k −
∂H

∂pk

)
δpkdt

so that
q̇k =

∂H

∂pk

These are Hamilton’s equations. Whenever the Legendre transformation between L and H and between q̇k
and pk is non-degenerate, Hamilton’s equations,

q̇k =
∂H

∂pk

ṗk = −∂H
∂qk

form a system equivalent to the Euler-Lagrange or Newtonian equations.

2.1 Example: Newton’s second law
Suppose the Lagrangian takes the form

L =
1
2
mẋ2 − V (x)

Then the conjugate momenta are

pi =
∂L

∂ẋi
= mẋi

and the Hamiltonian becomes

H (xi, pj , t) ≡
∑

pj ẋj − L (xi, ẋj , t)

= mẋ2 − 1
2
mẋ2 + V (x)

=
1
2
mẋ2 + V (x)

=
1

2m
p2 + V (x)

Notice that we must invert the relationship between the momenta and the velocities,

ẋi =
pi
m

then expicitly replace all occurrences of the velocity with appropriate combinations of the momentum.
Hamilton’s equations are:

ẋk =
∂H

∂pk

=
pk
m

ṗk = − ∂H
∂xk

= − ∂V
∂xk

thereby reproducing the usual definition of momentum and Newton’s second law.
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2.2 Example
Suppose we have a coupled oscillator comprised of two identical pendula of length l and each of mass m,
connected by a light spring with spring constant k. Then for small displacements, the action is

S =
ˆ [

1
2
ml2

(
θ̇21 + θ̇22

)
− 1

2
k (l sin θ1 − l sin θ2)2 −mgl (1− cos θ1)−mgl (1− cos θ2)

]
dt

which for small angles becomes approximately

S =
ˆ [

1
2
ml2

(
θ̇21 + θ̇22

)
− 1

2
k (lθ1 − lθ2)2 − 1

2
mgl

(
θ21 + θ22

)]
dt

The conjugate momenta are:

p1 =
∂L

∂θ̇1

= ml2θ̇1

p2 =
∂L

∂θ̇2

= ml2θ̇2

and the Hamiltonian is

H = p1θ̇1 + p2θ̇2 − L

= ml2θ̇21 +ml2θ̇22 −
(

1
2
ml2

(
θ̇21 + θ̇22

)
− 1

2
k (lθ1 − lθ2)2 − 1

2
mgl

(
θ21 + θ22

))
=

1
2
ml2

(
θ̇21 + θ̇22

)
+

1
2
k (lθ1 − lθ2)2 +

1
2
mgl

(
θ21 + θ22

)
=

1
2ml2

(
p2
1 + p2

2

)
+

1
2
k (lθ1 − lθ2)2 +

1
2
mgl

(
θ21 + θ22

)
Notice that we always eliminate the velocities and write the Hamiltonian as a function of the momenta, pi.

Hamilton’s equations are:

θ̇1 =
∂H

∂p1

=
1
ml2

p1

θ̇2 =
∂H

∂p2

=
1
ml2

p2

ṗ1 = −∂H
∂θ1

= −1
2
kl2 (θ1 − θ2)−mglθ1

ṗ2 = −∂H
∂θ2

=
1
2
kl2 (θ1 − θ2)−mglθ2
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From here we may solve in any way that suggests itself. If we differentiate θ̇1 again, and use the third
equation, we have

θ̈1 =
1
ml2

ṗ1

= − 1
ml2

1
2
kl2 (θ1 − θ2)− g

l
θ1

= − k
m

1
2

(θ1 − θ2)− g

l
θ1

Similarly, for θ2 we have

θ̈2 =
k

m

1
2

(θ1 − θ2)− g

l
θ2

Subtracting,

θ̈1 − θ̈2 = − k
m

1
2

(θ1 − θ2)− k

m

1
2

(θ1 − θ2)

d2

dt2
(θ1 − θ2) +

k

m
(θ1 − θ2) = 0

so that

θ1 − θ2 = A sin

√
k

m
t+B cos

√
k

m
t

Adding instead, we find
θ̈1 + θ̈2 = −g

l
(θ1 + θ2)

so that

θ1 + θ2 = C sin
√
g

l
t+D cos

√
g

l
t

3 Formal developments
In order to fully appreciate the power and uses of Hamiltonian mechanics, we make some formal developments.
First, we write Hamilton’s equations,

ẋk =
∂H

∂pk

ṗk = − ∂H
∂xk

for k = 1, . . . , n, in a different way. Define a unified name for our 2n coordinates,

ξA = (xi, pj)

for A = 1, . . . , 2n. That is, more explicitly,

ξi = xi

ξn+i = pi

We may immediately write the left side of both of Hamilton’s equations at once as

ξ̇A = (ẋi, ṗj)
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The right side of the equations involves all of the terms

∂H

∂ξA
=
(
∂H

∂xi
,
∂H

∂pj

)
but there is a difference of a minus sign between the two equations and the interchange of xi and pi. We
handle this by introducing a matrix called the symplectic form,

ΩAB =
(

0 1
−1 0

)
where

[1]ij = δij

is the n× n identity matrix. Then, using the summation convention, Hamilton’s equations take the form of
a single expression,

ξ̇A = ΩAB
∂H

∂ξB
We may check this by writing it out explicitly,(

ẋi
ṗi′

)
=

(
0 δij′

−δi′j 0

)( ∂H
∂xj
∂H
∂pj′

)

=

(
δij′

∂H
∂pj′

−δi′j ∂H∂xj

)

=

(
∂H
∂pi

− ∂H
∂xi′

)
In the example above, we have ξ1 = θ1, ξ2 = θ2, ξ3 = p1 and ξ4 = p2. In terms of these, the Hamiltonian

may be written as

H =
1
2
HABξAξB

HAB =


kl2 +mgl −kl2 0 0
−kl2 kl2 +mgl 0 0

0 0 1
ml2 0

0 0 0 1
ml2


and with

∂

∂ξC
H =

1
2
HABδACξB +

1
2
HABξAδBC = HCBξB

Hamilton’s equations are
ξ̇1
ξ̇2
ξ̇3
ξ̇4

 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0




kl2 +mgl −kl2 0 0
−kl2 kl2 +mgl 0 0

0 0 1
ml2 0

0 0 0 1
ml2




ξ1
ξ2
ξ3
ξ4



=


0 0 1

ml2 0
0 0 0 1

ml2

−kl2 −mgl kl2 0 0
kl2 −kl2 −mgl 0 0




ξ1
ξ2
ξ3
ξ4



=


1
ml2 ξ3
1
ml2 ξ4

−kl2ξ1 −mglξ1 + kl2ξ2
−kl2ξ2 −mglξ2 + kl2ξ1
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so that 
ξ̇1
ξ̇2
ξ̇3
ξ̇4

 =


1
ml2 ξ3
1
ml2 ξ4

−kl2 (ξ1 − ξ2)−mglξ1
kl2 (ξ1 − ξ2)−mglξ2


as expected.

3.1 Properties of the symplectic form
We note a number of important properties of the symplectic form. First, it is antisymmetric,

Ωt = −Ω
ΩAB = −ΩBA

and it squares to minus the 2n-dimensional identity,

Ω2 = −1(
0 1
−1 0

)(
0 1
−1 0

)
=

(
−1 0
0 −1

)
= −

(
1 0
0 1

)
We also have

Ωt = Ω−1

since Ωt = −Ω, and therefore ΩΩt = Ω (−Ω) = −Ω2 = 1. Since all components of ΩAB are constant, it is
also true that

∂AΩBC =
∂

∂ξA
ΩBC = 0

This last condition does not hold in every basis, however.
The defining properties of the symplectic form, necessary and sufficient to guarantee that it has the

properties we require for Hamiltonian mechanics are that it be a 2n × 2n matrix satisfying two properties
at each point of phase space:

1. Ω2 = −1

2. ∂AΩBC + ∂BΩCA + ∂CΩAB = 0

The first of these is enough for there to exist a change of basis so that ΩAB =
(

0 1
−1 0

)
at any given

point, while the vanishing combination of derivatives insures that this may be done at every point of phase
space.

3.2 Conservation and cyclic coordinates
From the relationship between the Lagrangian and the Hamiltonian,

H = piẋi − L

we see that
∂H

∂xi
= − ∂L

∂xi
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If the coordinate xi is cyclic, ∂L
∂xi

= 0, then the corresponding Hamilton equation reads

ṗi = −∂H
∂xi

= 0

and the conjugate momentum

pi =
∂L

∂ẋi

is conserved, so the relationship between cyclic coordinates and conserved quantities still holds.
Since the Lagrangian is independent of pi, depending only on xi and ẋi, we also have a corresponding

statement about momentum. Suppose some momentum, pi, is cyclic in the Hamiltonian,

∂H

∂pi
= 0

Then from either Hamilton’s equations or from the relationship between the Hamiltonian and the Lagrangian,
we immediately have

ẋi = 0

so that the coordinate xi is a constant of the motion.
Suppose we have a cyclic coordinate, say xn. Then the conserved momentum takes its initial value, pn0,

and the Hamiltonian is
H = H (x1, . . . xn−1; p1, . . . pn−1, pn0)

and therefore immediately becomes a function of n− 1 variables. This is simpler than the Lagrangian case,
where constancy of pn makes no immediate simplification of the Lagrangian.

Example 1: As a simple example, consider the 2-dimensional Kepler problem, with Lagrangian

L =
1
2
m
(
ṙ2 + r2θ̇2

)
+
GM

r

The coordinate θ is cyclic and therefore

l =
∂L

∂θ̇
= mr2θ̇

is conserved, but this quantity does not explicitly occur in the Lagrangian. However, the Hamiltonian is

H =
1

2m

(
p2
r +

p2
θ

r2

)
− GM

r

so pθ = l is constant and we immediately have

H =
1

2m

(
p2
r +

l2

r2

)
− GM

r

Example 2 (problem 21a): Consider a flywheel of mass M and radius a, its center fixed . A rod of
length a is attached to the perimeter with its other end constrained to lie on a horizontal line through the
center of the flywheel, and is attached to the massless rod of a simple pendulum of length l and mass m.
Find the Hamiltonian.

First, find L,

T =
1
2
mv2 +

1
2
Iϕ̇2
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where ϕ̇ (t) is the angular velocity of the flywheel and

I33 =
M

πa2d

ˆ (
x2 + y2 + z2 − z2

)
dxdydz

=
M

πa2

ˆ (
x2 + y2

)
dxdy

=
M

πa2

ˆ
ρ3dρdϕ

=
2πM
πa2

a4

4

=
1
2
Ma2

while the velocity of the pendulum bob is the combination of the swinging, lθ̇, and the oscillatory motion of
the suspension point, located at 2a cosωt. With the postion of m given by

x = 2a cosϕ+ l sin θ
y = l cos θ

the velocity has components

ẋ = −2aϕ̇ sinϕ+ lθ̇ cos θ
ẏ = −lθ̇ sin θ

Therefore,

T =
1
2
mv2 +

1
2
Iϕ̇2

=
1
2
m
(
ẋ2 + ẏ2

)
+

1
4
Ma2ϕ̇2

=
1
2
m
(

4a2ϕ̇2 sin2 ϕ− 4alϕ̇θ̇ sinϕ cos θ + l2θ̇2
)

+
1
4
Ma2ϕ̇2

and the potential is simply
V = −mgl cos θ

up to an arbitrary constant. Therefore,

L =
1
2
m
(

4a2ϕ̇2 sin2 ϕ− 4alϕ̇θ̇ sinϕ cos θ + l2θ̇2
)

+
1
4
Ma2ϕ̇2 +mgl cos θ

To find the Hamiltonian, we first find the conjugate momenta,

pθ =
∂L

∂θ̇

= ml2θ̇ − 2malϕ̇ sinϕ cos θ

pϕ =
∂L

∂ϕ̇

= 4ma2ϕ̇ sin2 ϕ− 2malθ̇ sinϕ cos θ +
1
2
Ma2ϕ̇

Next, find the Hamiltonian in terms of both velocities and momenta,

H =
(
ml2θ̇ − 2malϕ̇ sinϕ

)
θ̇ +

(
4ma2ϕ̇ sin2 ϕ− 2malθ̇ sinϕ+

1
2
Ma2ϕ̇

)
ϕ̇

−1
2
m
(

4a2ϕ̇2 sin2 ϕ− 4alϕ̇θ̇ sinϕ+ l2θ̇2
)
− 1

4
Ma2ϕ̇2 −mgl cos θ

=
1
2
ml2θ̇2 − 2malϕ̇θ̇ sinϕ+ 2ma2ϕ̇2 sin2 ϕ+

1
4
Ma2ϕ̇2 −mgl cos θ
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Finally, solve for the velocities and eliminate them from H,

θ̇ =
pθ
ml2

+
2aϕ̇
l

sinϕ

pϕ + 2malθ̇ sinϕ = 4ma2ϕ̇ sin2 ϕ+
1
2
Ma2ϕ̇

pϕ + 2mal
(
pθ
ml2

+
2aϕ̇
l

sinϕ
)

sinϕ = 4ma2ϕ̇ sin2 ϕ+
1
2
Ma2ϕ̇

pϕ +
2apθ
l

sinϕ = 4ma2ϕ̇ sin2 ϕ+
1
2
Ma2ϕ̇− 4ma2ϕ̇ sin2 ϕ

= ϕ̇

(
4ma2 sin2 ϕ+

1
2
Ma2 − 4ma2 sin2 ϕ

)
=

1
2
Ma2ϕ̇

ϕ̇ =
2

Ma2
pϕ +

4 sinϕ
alM

pθ

and then

θ̇ =
pθ
ml2

+
2aϕ̇
l

sinϕ

=
pθ
ml2

+
4

Mal
pϕ sinϕ+

8 sin2 ϕ

l2M
pθ

=
1
ml2

(
1 +

8m
M

sin2 ϕ

)
pθ +

4
Mal

pϕ sinϕ

so finally,

H =
1
2
ml2θ̇2 − 2malϕ̇θ̇ sinϕ+ 2ma2ϕ̇2 sin2 ϕ+

1
4
Ma2ϕ̇2 −mgl cos θ

=
1
2
ml2

(
1

(ml2)2

(
1 +

8m
M

sin2 ϕ

)2

p2
θ +

8 sinϕ
Mmal3

(
1 +

8m
M

sin2 ϕ

)
pϕpθ +

16
M2a2l2

p2
ϕ sin2 ϕ

)

−2mal
(

2
Ma2

pϕ +
4 sinϕ
alM

pθ

)(
1
ml2

(
1 +

8m
M

sin2 ϕ

)
pθ +

4
Mal

pϕ sinϕ
)

sinϕ

+
(

2ma2 sin2 ϕ+
1
4
Ma2

)(
4

M2a4
p2
ϕ + 2

2
Ma2

pϕ
4 sinϕ
alM

pθ +
16 sin2 ϕ

a2l2M2
p2
θ

)
−mgl cos θ

=
1

2ml2

(
1 +

8m
M

sin2 ϕ

)2

p2
θ +

4 sinϕ
Mal

(
1 +

8m
M

sin2 ϕ

)
pϕpθ +

8m
M2a2

p2
ϕ sin2 ϕ

−4 sinϕ
Mla

(
1 +

8m
M

sin2 ϕ

)
pϕpθ −

8 sin2 ϕ

Ml2

(
1 +

8m
M

sin2 ϕ

)
pθpθ −

8m
M2a2

pϕpϕ sin2 ϕ− 32m
M2al

pθpϕ sin3 ϕ

+
(

8m
M2a2

sin2 ϕ+
1

Ma2

)
p2
ϕ +

(
32m sin3 ϕ

alM2
+

4 sinϕ
alM

)
pϕpθ +

(
32m sin4 ϕ

l2M2
+

4 sin2 ϕ

l2M

)
p2
θ −mgl cos θ

4 Note
My computer has swallowed the next ten pages of notes. Instead of rewriting it all now, I am copying relevant
sections of my Mechanics book. I’ll try to fill in any missing details.

5 Phase space and the symplectic form
We now explore some of the properties of phase space and Hamilton’s equations.

12



One advantage of the Hamiltonian formulation is that there is now one equation for each initial condition.
This gives the space of all qs and ps a uniqueness property that configuration space (the space spanned by the
qs only) doesn’t have. For example, a projectile which is launched from the origin. Knowing only this fact,
we still don’t know the path of the object – we need the initial velocity as well. As a result, many possible
trajectories pass through each point of configuration space. By contrast, the initial point of a trajectory in
phase space gives us both the initial position and the initial momentum. There can be only one path of the
system that passes through that point.

Systems with any number of degrees of freedom may be handled in this way. If a system has N degrees of
freedom then its phase space is the 2N -dimensional space of all possible values of both position and momen-
tum. We define configuration space to be the space of all possible postions of the particles comprising the
system, or the complete set of possible values of the degrees of freedom of the problem. Thus, configuration
space is the N -dimensional space of all values of qi. By momentum space, we mean the N -dimensional space
of all possible values of all of the conjugate momenta. Hamilton’s equations then consist of 2N first order
differential equations for the motion in phase space.

We illustrate these points with the simple example of a one dimensional harmonic oscillator.
Let a mass, m, free to move in one direction, experience a Hooke’s law restoring force, F = −kx. Solve

Hamilton’s equations and study the motion of system in phase space. The Lagrangian for this system is

L = T − V

=
1
2
mẋ2 − 1

2
kx2

The conjugate momentum is just

p =
∂L

∂ẋ
= mẋ

so the Hamiltonian is

H = pẋ− L

=
p2

m
− 1

2
mẋ2 +

1
2
kx2

=
p2

2m
+

1
2
kx2

Hamilton’s equations are

ẋ =
∂H

∂p
=

p

m

ṗ = −∂H
∂x

= −kx

∂H

∂t
= −∂L

∂t
= 0

Note that Hamilton’s equations are two first-order equations. From this point on the coupled linear equations

ṗ = −kx
ẋ =

p

m

may be solved in any of a variety of ways. Let’s treat it as a matrix system,

d

dt

(
x
p

)
=
(

1
m

−k

)(
x
p

)
(1)

The matrix M =
(

−k
1
m

)
has eigenvalues ω =

(√
k
m ,−

√
k
m

)
and diagonalizes to(

−iω 0
0 iω

)
= AMA−1

13



where

A =
1

2i
√
km

(
i
√
km 1

i
√
km −1

)
A−1 =

(
−1 −1

−i
√
km i

√
km

)
ω =

√
k

m

Therefore, multiplying eq.(1) on the left by A and inserting 1 = A−1A,

d

dt
A

(
x
p

)
= A

(
1
m

−k

)
A−1A

(
x
p

)
(2)

we get decoupled equations in the new variables:

(
a
a†

)
= A

(
q
p

)
=

 1
2

(
x− ip√

km

)
1
2

(
x+ ip√

km

)  (3)

The decoupled equations are
d

dt

(
a
a†

)
=
(
−iω 0

0 iω

)(
a
a†

)
(4)

or simply

ȧ = −iωa
ȧ† = −iωa†

with solutions

a = a0e
−iωt

a† = a†0e
iωt

The solutions for x and p may be written as

x = x0 cosωt+
p0

mω
sinωt

p = −mωx0 sinωt+ p0 cosωt

Notice that once we specify the initial point in phase space, (x0, p0) , the entire solution is determined. This
solution gives a parameterized curve in phase space. To see what curve it is, note that

m2ω2x2

2mE
+

p2

2mE
=

m2ω2x2

p2
0 +m2ω2x2

0

+
p2

p2
0 +m2ω2x2

0

=
m2ω2

p2
0 +m2ω2x2

0

(
x0 cosωt+

p0

mω
sinωt

)2

+
1

p2
0 +m2ω2x2

0

(−mωx0 sinωt+ p0 cosωt)2

=
m2ω2x2

0

p2
0 +m2ω2x2

0

+
p2
0

p2
0 +m2ω2x2

0

= 1

14



or
m2ω2x2 + p2 = 2mE

This describes an ellipse in the xp plane. The larger the energy, the larger the ellipse, so the possible motions
of the system give a set of nested, non-intersecting ellipses. Clearly, every point of the xp plane lies on exactly
one ellipse.

The phase space description of classical systems are equivalent to the configuration space solutions and
are often easier to interpret because more information is displayed at once. The price we pay for this is
the doubled dimension – paths rapidly become difficult to plot. To ofset this problem, we can use Poincaré
sections – projections of the phase space plot onto subspaces that cut across the trajectories. Sometimes the
patterns that occur on Poincaré sections show that the motion is confined to specific regions of phase space,
even when the motion never repeats itself. These techniques allow us to study systems that are chaotic,
meaning that the phase space paths through nearby points diverge rapidly.

Now consider the general case of N degrees of freedom. Let

ξA =
(
qi, pj

)
where A = 1, . . . , 2N. Then the 2N variables ξA provide a set of coordinates for phase space. We would like
to write Hamilton’s equations in terms of these, thereby treating all 2N directions on an equal footing.

In terms of ξA, we have

dξA

dt
=

(
q̇i

ṗj

)
=

(
∂H
∂pi

− ∂H
∂qj

)

= ΩAB
∂H

∂ξB

where the presence of ΩAB in the last step takes care of the difference in signs on the right. Here ΩAB is
just the inverse of the symplectic form found from the curl of the dilatation, given by

ΩAB =
(

0 δij
−δji 0

)
Its occurrence in Hamilton’s equations is an indication of its central importance in Hamiltonian mechanics.
We may now write Hamilton’s equations as

dξA

dt
= ΩAB

∂H

∂ξB
(5)

Consider what happens to Hamilton’s equations if we want to change to a new set of phase space
coordinates, χA = χA (ξ) . Let the inverse transformation be ξA (χ) . The time derivatives become

dξA

dt
=
∂ξA

∂χB
dχB

dt

while the right side becomes

ΩAB
∂H

∂ξB
= ΩAB

∂χC

∂ξB
∂H

∂χC

Equating these expressions,
∂ξA

∂χB
dχB

dt
= ΩAB

∂χD

∂ξB
∂H

∂χD
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we multiply by the Jacobian matrix, ∂χ
C

∂ξA to get

∂χC

∂ξA
∂ξA

∂χB
dχB

dt
=

∂χC

∂ξA
ΩAB

∂χD

∂ξB
∂H

∂χD

δCB
dχB

dt
=

∂χC

∂ξA
ΩAB

∂χD

∂ξB
∂H

∂χD

and finally
dχC

dt
=
∂χC

∂ξA
ΩAB

∂χD

∂ξB
∂H

∂χD

Defining the symplectic form in the new coordinate system,

Ω̃CD ≡ ∂χC

∂ξA
ΩAB

∂χD

∂ξB

we see that Hamilton’s equations are entirely the same if the transformation leaves the symplectic form
invariant,

Ω̃CD = ΩCD

Any linear transformation MA
B leaving the symplectic form invariant,

ΩAB ≡MA
CM

B
DΩCD

is called a symplectic transformation. Coordinate transformations which are symplectic transformations at
each point are called canonical. Therefore those functions χA (ξ) satisfying

ΩCD ≡ ∂χC

∂ξA
ΩAB

∂χD

∂ξB

are canonical transformations. Canonical transformations preserve Hamilton’s equations.

5.1 Poisson brackets
We may also write Hamilton’s equations in terms of the Poisson brackets. Recall that the Poisson bracket
of any two dynamical variables f and g is given by

{f, g} = ΩAB
∂f

∂ξA
∂g

∂ξB

The importance of this product is that it too is preserved by canonical transformations. We see this as
follows.

Let ξA be any set of phase space coordinates in which Hamilton’s equations take the form of eq.(5), and
let f and g be any two dynamical variables, that is, functions of these phase space coordinates, ξA. The
Poisson bracket of f and g is given above. In a different set of coordinates, χA (ξ) , we have

{f, g}′ = ΩAB
∂f

∂χA
∂g

∂χB

= ΩAB
(
∂ξC

∂χA
∂f

∂ξC

)(
∂ξD

∂χB
∂g

∂ξD

)
=

(
∂ξC

∂χA
ΩAB

∂ξD

∂χB

)
∂f

∂ξC
∂g

∂ξD

Therefore, if the coordinate transformation is canonical so that

∂ξC

∂χA
ΩAB

∂ξD

∂χB
= ΩCD
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then we have
{f, g}′ = ΩAB

∂f

∂ξC
∂g

∂ξD
= {f, g}

and the Poisson bracket is unchanged. We conclude that canonical transformations preserve all Poisson
brackets.

An important special case of the Poisson bracket occurs when one of the functions is the Hamiltonian.
In that case, we have

{f,H} = ΩAB
∂f

∂ξA
∂H

∂ξB

=
∂f

∂xi
∂H

∂pi
− ∂f

∂pi
∂H

∂xi

=
∂f

∂xi
dxi

dt
− ∂f

∂pi

(
−dpi
dt

)
=

df

∂t
− ∂f

∂t

or simply,
df

∂t
= {f,H}+

∂f

∂t

This shows that as the system evolves classically, the total time rate of change of any dynamical variable is
the sum of the Poisson bracket with the Hamiltonian and the partial time derivative. If a dynamical variable
has no explicit time dependence, then ∂f

∂t = 0 and the total time derivative is just the Poisson bracket with
the Hamiltonian.

The coordinates now provide a special case. Since neither xi nor pi has any explicit time dependence,
with have

dxi

dt
=

{
H,xi

}
dpi
dt

= {H, pi} (6)

and we can check this directly:

dqi
dt

=
{
H,xi

}
=

N∑
j=1

(
∂xi

∂xj
∂H

∂pj
− ∂xi

∂pj

∂H

∂xj

)

=
N∑
j=1

δij
∂H

∂pj

=
∂H

∂pi

and

dpi
dt

= {H, pi}

=
N∑
j=1

(
∂pi
∂qj

∂H

∂pj
− ∂pi
∂pj

∂H

∂qj

)
= −∂H

∂qi
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Notice that since qi, pi and are all independent, and do not depend explicitly on time, ∂qi

∂pj
= ∂pi

∂qj
= 0 =

∂qi

∂t = ∂pi

∂t .
Finally, we define the fundamental Poisson brackets. Suppose xi and pj are a set of coordinates on

phase space such that Hamilton’s equations hold in the either the form of eqs.(6) or of eqs.(5). Since they
themselves are functions of (xm, pn) they are dynamical variables and we may compute their Poisson brackets
with one another. With ξA = (xm, pn) we have

{
xi, xj

}
ξ

= ΩAB
∂xi

∂ξA
∂xj

∂ξB

=
N∑
m=1

(
∂xi

∂xm
∂xj

∂pm
− ∂xi

∂pm

∂xj

∂xm

)
= 0

for xi with xj ,

{
xi, pj

}
ξ

= ΩAB
∂xi

∂ξA
∂pj
∂ξB

=
N∑
m=1

(
∂xi

∂xm
∂pj
∂pm

− ∂xi

∂pm

∂pj
∂xm

)

=
N∑
m=1

δimδ
m
j

= δij

for xi with pj and finally

{pi, pj}ξ = ΩAB
∂pi
∂ξA

∂pj
∂ξB

=
N∑
m=1

(
∂pi
∂xm

∂pj
∂pm

− ∂pi
∂pm

∂pj
∂xm

)
= 0

for pi with pj . The subscript ξ on the bracket indicates that the partial derivatives are taken with respect
to the coordinates ξA =

(
xi, pj

)
. We summarize these relations as{

ξA, ξB
}
ξ

= ΩAB

We summarize the results of this subsection with a theorem: Let the coordinates ξA be canonical. Then
a transformation χA (ξ) is canonical if and only if it satisfies the fundamental bracket relation{

χA, χB
}
ξ

= ΩAB

For proof, note that the bracket on the left is defined by

{
χA, χB

}
ξ

= ΩCD
∂χA

∂ξC
∂χB

∂ξD

so in order for χA to satisfy the canonical bracket we must have

ΩCD
∂χA

∂ξC
∂χB

∂ξD
= ΩAB (7)
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which is just the condition shown above for a coordinate transformation to be canonical. Conversely, suppose
the transformation χA (ξ) is canonical and

{
ξA, ξB

}
ξ

= ΩAB . Then eq.(7) holds and we have

{
χA, χB

}
ξ

= ΩCD
∂χA

∂ξC
∂χB

∂ξD
= ΩAB

so χA satisfies the fundamental bracked relation.
In summary, each of the following statements is equivalent:

1. χA (ξ) is a canonical transformation.

2. χA (ξ) is a coordinate transformation of phase space that preserves Hamilton’s equations.

3. χA (ξ) preserves the symplectic form, according to

ΩAB
∂ξC

∂χA
∂ξD

∂χB
= ΩCD

4. χA (ξ) satisfies the fundamental bracket relations{
χA, χB

}
ξ

= ΩCD
∂χA

∂ξC
∂χB

∂ξD

These bracket relations represent a set of integrability conditions that must be satisfied by any new set of
canonical coordinates. When we formulate the problem of canonical transformations in these terms, it is not
obvious what functions qi

(
xj , pj

)
and πi

(
xj , pj

)
will be allowed. Fortunately there is a simple procedure

for generating canonical transformations, which we develop in the next section.
We end this section with three examples of canonical transformations.

5.1.1 Example 1: Coordinate transformations

Let the new configuration space variable, qi, be and an arbitrary function of the spatial coordinates:

qi = qi
(
xj
)

and let πj be the momentum variables corresponding to qi. Then
(
qi, πj

)
satisfy the fundamental Poisson

bracket relations iff: {
qi, qj

}
x,p

= 0{
qi, πj

}
x,p

= δij

{πi, πj}x,p = 0

Check each: {
qi, qj

}
x,p

=
N∑
m=1

(
∂qi

∂xm
∂qj

∂pm
− ∂qi

∂pm

∂qj

∂xm

)
= 0

since ∂qj

∂pm
= 0. For the second bracket,

δij =
{
qi, πj

}
x,p

=
N∑
m=1

(
∂qi

∂xm
∂πj
∂pm

− ∂qi

∂pm

∂πj
∂xm

)

=
N∑
m=1

∂qi

∂xm
∂πj
∂pm
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Since qi is independent of pm, we can satisfy this only if

∂πj
∂pm

=
∂xm

∂qj

Integrating gives

πj =
∂xn

∂qj
pn + cj

with cj an arbitrary constant. The presence of cj does not affect the value of the Poisson bracket. Choosing
cj = 0, we compute the final bracket:

{πi, πj}x,p =
N∑
m=1

(
∂πi
∂xm

∂πj
∂pm

− ∂πi
∂pm

∂πj
∂xm

)

=
N∑
m=1

(
∂2xn

∂xm∂qi
pn
∂xm

∂qj
− ∂xm

∂qi
∂2xn

∂xm∂qj
pn

)

=
N∑
m=1

(
∂xm

∂qj
∂

∂xm
∂xn

∂qi
− ∂xm

∂qi
∂

∂xm
∂xn

∂qj

)
pn

=
N∑
m=1

(
∂

∂qj
∂xn

∂qi
− ∂

∂qi
∂xn

∂qj

)
pn

= 0

Therefore, the transformations

qj = qj(xi)

πj =
∂xn

∂qj
pn + cj

is a canonical transformation for any functions qi(x). This means that the symmetry group of Hamilton’s
equations is at least as big as the symmetry group of the Euler-Lagrange equations.

5.1.2 Example 2: Interchange of x and p.

The transformation

qi = pi

πi = −xi

is canonical. We easily check the fundamental brackets:{
qi, qj

}
x,p

= {pi, pj}x,p = 0{
qi, πj

}
x,p

=
{
pi,−xj

}
x,p

= −
{
pi, x

j
}
x,p

= +
{
xj , pi

}
x,p

= δji
{πi, πj}x,p =

{
−xi,−xj

}
x,p

= 0

Interchange of xi and pj , with a sign, is therefore canonical. The use of generalized coordinates does not
include such a possibility, so Hamiltonian dynamics has a larger symmetry group than Lagrangian dynamics.
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For our last example, we first show that the composition of two canonical transformations is also canonical.
Let ψ (χ) and χ (ξ) both be canonical. Defining the composition transformation, ψ (ξ) = ψ (χ (ξ)) , we
compute

ΩCD
∂ψA

∂ξC
∂ψB

∂ξD
= ΩCD

(
∂ψA

∂χE
∂χE

∂ξC

)(
∂ψB

∂χF
∂χF

∂ξD

)
=

∂χE

∂ξC
∂χF

∂ξD
ΩCD

(
∂ψA

∂χE

)(
∂ψB

∂χF

)
= ΩEF

(
∂ψA

∂χE

)(
∂ψB

∂χF

)
= ΩAB

so that ψ (χ (ξ)) is canonical.

5.1.3 Example 3: Momentum transformations

By the previous results, the composition of an arbitratry coordinate change with x, p interchanges is canon-
ical. Consider the effect of composing (a) an interchange, (b) a coordinate transformation, and (c) an
interchange.

For (a), let

qi1 = pi

π1
i = −xi

Then for (b) we choose an arbitrary function of qi1 :

Qi = Qi
(
qj1

)
= Qi (pj)

Pi =
∂qn1
∂Qi

πn = −∂pn
∂Qi

xn

Finally, for (c), another interchange:

qi = Pi = −∂pn
∂Qi

xn

πi = −Qi = −Qi (pj)

This establishes that replacing the momenta by any three independent functions of the momenta, preserves
Hamilton’s equations.

5.2 Generating functions
There is a systematic approach to canonical transformations using generating functions. We will give a
simple example of the technique. Given a system described by a Hamiltonian H(xi, pj), we seek another
Hamiltonian H ′(qi, πj) such that the equations of motion have the same form, namely

dxi

dt
=

∂H

∂pi
dpi
dt

= −∂H
∂xi
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in the original system and

dqi

dt
=

∂H ′

∂πi
dπi
dt

= −∂H
′

∂qi

in the transformed variables. The principle of least action must hold for each pair:

S =
ˆ (

pidx
i −Hdt

)
S′ =

ˆ (
πidq

i −H ′dt
)

where S and S′ differ by at most a constant. Correspondingly, the integrands may differ by the addition of
a total differential, df = df

dtdt, since this will integrate to a surface term and therefore will not contribute to
the variation. Notice that this corresponds exactly to a local dilatation, which produces a change

W ′αdx
α = Wαdx

α − df

= Wαdx
α − df

dt
dt

In general we may therefore write

pidx
i −Hdt = πidq

i −H ′dt+ df

A convenient way to analyze the condition is to solve it for the differential df

df = pidx
i − πidqi + (H ′ −H) dt

For the differential of f to take this form, it must be a function of xi, qi and t, that is, f = f(xi, qi, t).
Therefore, the differential of f is

df =
∂f

∂xi
dxi +

∂f

∂qi
dqi +

∂f

∂t
dt

Equating the expressions for df we match up terms to require

pi =
∂f

∂xi
(8)

πi = − ∂f
∂qi

(9)

H ′ = H +
∂f

∂t
(10)

The first equation

pi =
∂f(xj , qj , t)

∂xi
(11)

gives qi implicitly in terms of the original variables, while the second determines πi. Notice that we may pick
any function qi = qi(pj , xj , t). This choice fixes the form of πi by the eq.(9), while the eq.(10) gives the new
Hamiltonian in terms of the old one. The function f is the generating function of the transformation.

6 General solution in Hamiltonian dynamics
We conclude with the crowning theorem of Hamiltonian dynamics: a proof that for any Hamiltonian dynam-
ical system there exists a canonical transformation to a set of variables on phase space such that the paths
of motion reduce to single points. Clearly, this theorem shows the power of canonical transformations! The
theorem relies on describing solutions to the Hamilton-Jacobi equation, which we introduce first.
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6.1 The Hamilton-Jacobi Equation
We have the following equations governing Hamilton’s principal function.

∂S
∂pi

= 0

∂S
∂xi

= pi

∂S
∂t

= −H

Since the Hamiltonian is a given function of the phase space coordinates and time, H = H(xi, pi, t), we
combine the last two equations:

∂S
∂t

= −H(xi, pi, t) = −H(xi,
∂S
∂xi

, t)

This first order differential equation in s + 1 variables (t, xi; i = 1, . . . s) for the principal function S is the
Hamilton-Jacobi equation. Notice that the Hamilton-Jacobi equation has the same general form as the
Schrödinger equation and is equally difficult to solve for all but special potentials. Nonetheless, we are
guaranteed that a complete solution exists, and we will assume below that we can find it. Before proving
our central theorem, we digress to examine the exact relationship between the Hamilton-Jacobi equation
and the Schrödinger equation.

6.2 Quantum Mechanics and the Hamilton-Jacobi equation
The Hamiltonian-Jacobi equation provides the most direct link between classical and quantum mechanics.
There is considerable similarity between the Hamilton-Jacobi equation and the Schrödinger equation:

∂S
∂t

= −H(xi,
∂S
∂xi

, t)

i~
∂ψ

∂t
= H(x̂i, p̂i, t)

We make the relationship precise as follows.
Suppose the Hamiltonian in each case is that of a single particle in a potential:

H =
p2

2m
+ V (x)

Write the quantum wave function as
ψ = Ae

i
~ϕ

The Schrödinger equation becomes

i~
∂
(
Ae

i
~ϕ
)

∂t
= − ~2

2m
52
(
Ae

i
~ϕ
)

+ V
(
Ae

i
~ϕ
)

i~
∂A

∂t
e

i
~ϕ −Ae i

~ϕ
∂ϕ

∂t
= − ~2

2m
5 ·
(
e

i
~ϕ 5A+

i

~
Ae

i
~ϕ 5 ϕ

)
+ V Ae

i
~ϕ

= − ~2

2m
e

i
~ϕ

(
i

~
5 ϕ5A+52A

)
− ~2

2m
e

i
~ϕ

(
i

~
5A · 5ϕ+

i

~
A52 ϕ

)
− ~2

2m

(
i

~

)2

e
i
~ϕ (A5 ϕ · 5ϕ)

+V Ae
i
~ϕ
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Then cancelling the exponential,

i~
∂A

∂t
−A∂ϕ

∂t
= − i~

2m
5 ϕ5A− ~2

2m
52 A

− i~
2m
5A · 5ϕ− i~

2m
A52 ϕ

+
1

2m
(A5 ϕ · 5ϕ) + V A

Collecting by powers of ~,

O
(
~0
)

: −∂ϕ
∂t

=
1

2m
5 ϕ · 5ϕ+ V

O
(
~1
)

:
1
A

∂A

∂t
= − 1

2m

(
2
A
5A · 5ϕ+52ϕ

)
O
(
~2
)

: 0 = − ~2

2m
52 A

The zeroth order terms is the Hamilton-Jacobi equation, with ϕ = S:

−∂S
∂t

=
1

2m
5S · 5S + V

=
1

2m
p2 + V (x)

where p = 5S. Therefore, the Hamilton-Jacobi equation is the ~→ 0 limit of the Schrödinger equation.

6.3 Trivialization of the motion
We now seek a solution, in principle, to the complete mechanical problem. The solution is to find a canonical
transformation that makes the motion trivial. Hamilton’s principal function, the solution to the Hamilton-
Jacobi equation, is the generating function of this canonical transformation.

To begin, suppose we have a solution to the Hamilton-Jacobi equation of the form

S = g(t, x1, . . . , xs, α1, . . . , αs) +A

where the αi and A provide s + 1 constants describing the solution. Such a solution is called a complete
integral of the equation, as opposed to a general integral which depends on arbitrary functions. We will
show below that a complete solution leads to a general solution. We use S as a generating function.

Our canonical transformation will take the variables (xi, pi) to a new set of variables
(
βi, αi

)
. Since S

depends on the old coordinates xi and the new momenta αi, we have the relations

pi =
∂S
∂xi

βi =
∂S
∂αi

H ′ = H +
∂S
∂t

Notice that the new Hamiltonian, H ′, vanishes because the Hamiltonian-Jacobi equation is satisfied by S!.
With H ′ = 0, Hamilton’s equations in the new canonical coordinates are simply

dαi
dt

=
∂H ′

∂βi
= 0

dβi
dt

= −∂H
′

∂αi
= 0
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with solutions

αi = const.

βi = const.

The system remains at the phase space point (αi, βi). To find the motion in the original coordinates as
functions of time and the 2s constants of motion,

xi = xi(t;αi, βi)

we can algebraically invert the s equations

βi =
∂g(xi, t, αi)

∂αi

The momenta may be found by differentiating the principal function,

pi =
∂S(xi, t, αi)

∂xi

Therefore, solving the Hamilton-Jacobi equation is the key to solving the full mechanical problem. Fur-
thermore, we know that a solution exists because Hamilton’s equations satisfy the integrability equation for
S.

We note one further result. While we have made use of a complete integral to solve the mechanical
problem, we may want a general integral of the Hamilton-Jacobi equation. The difference is that a complete
integral of an equation in s+ 1 variables depends on s+ 1 constants, while a general integral depends on s
functions. Fortunately, a complete integral of the equation can be used to construct a general integral, and
there is no loss of generality in considering a complete integral. We see this as follows. A complete solution
takes the form

S = g(t, x1, . . . , xs, α1, . . . , αs) +A

To find a general solution, think of the constant A as a function of the other s constants, A(α1, . . . , αs). Now
replace each of the αi by a function of the coordinates and time, αi → hi(t, xi). This makes S depend on
arbitrary functions, but we need to make sure it still solves the Hamilton-Jacobi equation. It will provided
the partials of S with respect to the coordinates remain unchanged. In general, these partials are given by

∂S
∂xi

=
(
∂S
∂xi

)
hi=const.

+
(
∂S
∂hk

)
x=const.

∂hk
∂xi

We therefore still have solutions provided(
∂S
∂hk

)
x=const.

∂hk
∂xi

= 0

and since we want hk to be an arbitrary function of the coordinates, we demand(
∂S
∂hk

)
x=const.

= 0

Then
∂S
∂hk

=
∂

∂hk
(g(t, xi, αi) +A(αi)) = 0

and we have
A(α1, . . . , αs) = const.− g

This just makes A into some specific function of xi and t.
Since the partials with respect to the coordinates are the same, and we haven’t changed the time depen-

dence,
S = g(t, x1, . . . , xs, h1, . . . , hs) +A (hi)

is a general solution to the Hamilton-Jacobi equation.
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6.3.1 Example 1: Free particle

The simplest example is the case of a free particle, for which the Hamiltonian is

H =
p2

2m

and the Hamilton-Jacobi equation is
∂S

∂t
= − 1

2m
(S′)2

Let
S = f(x)− Et

Then f(x) must satisfy
df

dx
=
√

2mE

and therefore

f(x) =
√

2mEx− c
= πx− c

where c is constant and we write the integration constant E in terms of the new (constant) momentum.
Hamilton’s principal function is therefore

S (x, π, t) = πx− π2

2m
t− c

Then, for a generating function of this type we have

p =
∂S

∂x
= π

q =
∂S

∂π
= x− π

m
t

H ′ = H +
∂S

∂t
= H − E

Because E = H, the new Hamiltonian, H ′, is zero. This means that both q and π are constant. The solution
for x and p follows immediately:

x = q +
π

m
t

p = π

We see that the new canonical variables (q, π) are just the initial position and momentum of the motion, and
therefore do determine the motion. The fact that knowing q and π is equivalent to knowing the full motion
rests here on the fact that S generates motion along the classical path. In fact, given initial conditions (q, π),
we can use Hamilton’s principal function as a generating function but treat π as the old momentum and x
as the new coordinate to reverse the process above and generate x(t) and p.

6.3.2 Example 2: Simple harmonic oscillator

For the simple harmonic oscillator, the Hamiltonian becomes

H =
p2

2m
+

1
2
kx2
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and the Hamilton-Jacobi equation is

∂S

∂t
= − 1

2m
(S′)2 +

1
2
kx2

Letting
S = f(x)− Et

as before, f(x) must satisfy
df

dx
=

√
2m
(
E − 1

2
kx2

)
and therefore

f(x) =
ˆ √

2m
(
E − 1

2
kx2

)
dx

=
ˆ √

π2 −mkx2dx

where we have set E = π2

2m . Now let
√
mkx = π sin y. The integral is immediate:

f(x) =
ˆ √

π2 −mkx2dx

=
π2

√
mk

ˆ
cos2 ydy

=
π2

2
√
mk

(y + sin y cos y)

Hamilton’s principal function is therefore

S (x, π, t) =
π2

2
√
mk

(
sin−1

(√
mk

x

π

)
+
√
mk

x

π

√
1−mkx

2

π2

)

− π
2

2m
t− c

=
π2

2
√
mk

sin−1
(√

mk
x

π

)
+
x

2

√
π2 −mkx2 − π2

2m
t− c

and we may use it to generate the canonical change of variable.
This time we have

p =
∂S

∂x

=
π

2
1√

1−mk x2

π2

+
1
2

√
π2 −mkx2 +

x

2
−mkx√
π2 −mkx2

=
1√

π2 −mkx2

(
π2

2
+

1
2
(
π2 −mkx2

)
− mkx2

2

)
=

√
π2 −mkx2

q =
∂S

∂π

=
π√
mk

sin−1
(√

mk
x

π

)
+

π2

2
√
mk

1√
1−mk x2

π2

(
−
√
mk

x

π2

)
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+
x

2
π√

π2 −mkx2
− π

m
t

=
π√
mk

sin−1
(√

mk
x

π

)
− π

m
t

H ′ = H +
∂S

∂t
= H − E = 0

The first equation relates p to the energy and position, the second gives the new position coordinate q, and
third equation shows that the new Hamiltonian is zero. Hamilton’s equations are trivial, so that π and q are
constant, and we can invert the expression for q to give the solution. Setting ω =

√
k
m , the solution is

x (t) =
π

mω
sin
(mω
π
q + ωt

)
= A sin (ωt+ φ)

where

q = Aφ

π = Amω

The new canonical coordinates therefore characterize the initial amplitude and phase of the oscillator.

6.3.3 Example 3: One dimensional particle motion

Now suppose a particle with one degree of freedom moves in a potential U(x). Little is changed. The the
Hamiltonian becomes

H =
p2

2m
+ U

and the Hamilton-Jacobi equation is
∂S

∂t
= − 1

2m
(S′)2 + U(x)

Letting
S = f(x)− Et

as before, f(x) must satisfy
df

dx
=
√

2m (E − U (x))

and therefore

f(x) =
ˆ √

2m (E − U (x))dx

=
ˆ √

π2 − 2mU (x)dx

where we have set E = π2

2m . Hamilton’s principal function is therefore

S (x, π, t) =
ˆ √

π2 − 2mU (x)dx− π2

2m
t− c

and we may use it to generate the canonical change of variable.
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This time we have

p =
∂S

∂x
=
√
π2 − 2mU (x)

q =
∂S

∂π
=

∂

∂π

(ˆ x

x0

√
π2 − 2mU (x)dx

)
− π

m
t

H ′ = H +
∂S

∂t
= H − E = 0

The first and third equations are as expected, while for q we may interchange the order of differentiation
and integration:

q =
∂

∂π

(ˆ √
π2 − 2mU (x)dx

)
− π

m
t

=
ˆ

∂

∂π

(√
π2 − 2mU (x)

)
dx− π

m
t

=
ˆ

πdx√
π2 − 2mU (x)

− π

m
t

To complete the problem, we need to know the potential. However, even without knowing U(x) we can make
sense of this result by combining the expression for q above to our previous solution to the same problem.
There, conservation of energy gives a first integral to Newton’s second law,

E =
p2

2m
+ U

=
1
2
m

(
dx

dt

)2

+ U

so we arrive at the familiar quadrature

t− t0 =
ˆ
dt =

ˆ x

x0

mdx√
2m (E − U)

Substituting into the expression for q,

q =
ˆ x πdx√

π2 − 2mU (x)
− π

m

ˆ x

x0

mdx√
2m (E − U)

− π

m
t0

=
ˆ x πdx√

π2 − 2mU (x)
−
ˆ x

x0

πdx√
π2 − 2mU (x)

− π

m
t0

=
ˆ x0 πdx√

π2 − 2mU (x)
− π

m
t0

We once again find that q is a constant characterizing the initial configuration. Since t0 is the time at which
the position is x0 and the momentum is p0, we have the following relations:

p2

2m
+ U(x) =

p2
0

2m
+ U(x0) = E = const.

and
t− t0 =

ˆ x

x0

dx√
2
m (E − U)

which we may rewrite as

t−
ˆ x dx√

2
m (E − U)

= t0 −
ˆ x0 dx√

2
m (E − U)

=
m

π
q = const.
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