Hamiltonian Mechanics
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1 Phase space

Phase space is a dynamical arena for classical mechanics in which the number of independent dynamical
variables is doubled from n variables g;, ¢ = 1,2,...,n to 2n by treating either the velocities or the momenta
as independent variables. This has two important consequences.

First, the equations of motion become first order differential equations instead of second order, so that
the initial conditions is enough to specify a unique point in phase space. The means that, unlike the
configurations space treatment, there is a unique solution to the equtions of motion through each point.
This permits some useful geometric techniques in the study of the system.

Second, as we shall see, the set of transformations that preserve the equations of motion is enlarged.
In Lagrangian mechanics, we are free to use n general coordinates, ¢;, for our description. In phase space,
however, we have 2n coordinates. Even though transformations among these 2n coordinates are not com-
pletely arbitrary, there are far more allowed transformations. This large set of transformations allows us, in
principal, to formulate a general solution to mechanical problems via the Hamilton-Jacobi equation.

1.1 Velocity phase space

While we will not be using velocity phase space here, it provides some motivation for our developments in
the next Sections. The formal presentation of Hamiltonian dynamics begins in Section 1.3.
Suppose we have an action functional

S: /L(q“qwt)dt

dependent on n dynamical variables, g; (), and their time derivatives. We might instead treat L (¢;,u;,t) as
a function of 2n dynamical variables. Thus, instead of treating the the velocities as time derivatives of the
position variables, (g;, ¢;) we introduce n velocities u; and treat them as independent. Then the variations
of the velocities du; are also independent, and we end up with 2n equations. We then include n constraints,
restoring the relationship between ¢; and ¢;,

Variation of the original dynamical variables then results in
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For the velocities, we find

0 = 9,5
oL
= / <8’U,Z — )\z> 5uidt
so that

0L
L 8ui

and finally, varying the Lagrange multipliers, \;, we recover the constraints,
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We may eliminate the multipliers by differentiating the velocity equation
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to find \; , then substituting for u; and \; into the q; equation,
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and we recover the Euler-Lagrange equations. If the kinetic energy is of the form ) . | %muf, then the

Lagrange multipliers are just the momenta,
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1.2 Phase space

We can make the construction above more general by requiring the Lagrange multipliers to always be the
conjugate momentum. Combining the constraint equation with the equation for \; we have

Ai = 8.L
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We now define the conjugate momentum to be exactly this derivative,
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Then the action becomes
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For Lagrangians quadratic in the velocities, the first two terms become
ey
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We define this quantity to be the Hamiltonian,
H=> pidi— L(g,4,t)
Then

S = /[Zpiq'i—H]dt

This successfully eliminates the Lagrange multipliers from the formulation.
The term “phase space” is generally reserved for momentum phase space, spanned by coordinates g;, p;.

1.2.1 Legendre transformation

Notice that H is, by definition, independent of the velocities, since
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Therefore, the Hamiltonian is a function of ¢; and p; only. This is an example of a general technique called
Legendre transformation. Suppose we have a function f, which depends on independent variables A, B and
dependent variables, having partial derivatives
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Then the differential of f is
df = PdA+ QdB

A Legendre transformation allows us to interchange variables to make either P or () or both into the
independent variables. For example, let g (4, B, P) = f — PA. Then
dg = df — AdP — PdA
= PdA+ QdB — AdP — PdA
= @QdB — AdP



so that g actually only changes with B and P, g = g (B, P). Similarly, h = f — QB is a function of (4, Q)
only, while k = — (f — PA — @B) has (P, Q) as independent variables. Explicitly,

dk = —df + PdA+ AdP + QdB + BdQ
AdP + BdQ
and we now have
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2 Hamilton’s equations

The essential formalism of Hamilton’s equation is as follows. We begin with the action

S = /L(qi,(jj,t)dt
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and define the conjugate momenta

and Hamiltonian
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Then the action may be written as

:/{ijqj*H(qzijvt) dt

where ¢; and p; are now treated as independent variables.
Finding extrema of the action with respect to all 2n variables, we find:
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These are Hamilton’s equations. Whenever the Legendre transformation between L and H and between ¢y,
and py is non-degenerate, Hamilton’s equations,
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form a system equivalent to the Euler-Lagrange or Newtonian equations.

2.1 Example: Newton’s second law

Suppose the Lagrangian takes the form
1
L= _-mx*-V(x)

2
Then the conjugate momenta are
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and the Hamiltonian becomes
H (wi,pj,t) = Y pjiy — L(wi,&5,1)
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Notice that we must invert the relationship between the momenta and the velocities,
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then expicitly replace all occurrences of the velocity with appropriate combinations of the momentum.
Hamilton’s equations are:
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thereby reproducing the usual definition of momentum and Newton’s second law.
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2.2 Example

Suppose we have a coupled oscillator comprised of two identical pendula of length | and each of mass m,
connected by a light spring with spring constant k. Then for small displacements, the action is

1 . . 1
S = / {2m12 (9% + 95) — 5k (Usindy — Usin62)* —mgl (1 — cos 1) — mgl (1 - 60892)] dt
which for small angles becomes approximately
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The conjugate momenta are:
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and the Hamiltonian is
H = pif+paby—L
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Notice that we always eliminate the velocities and write the Hamiltonian as a function of the momenta, p;.
Hamilton’s equations are:
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From here we may solve in any way that suggests itself. If we differentiate 6, again, and use the third
equation, we have
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3 Formal developments

Adding instead, we find

so that

In order to fully appreciate the power and uses of Hamiltonian mechanics, we make some formal developments.
First, we write Hamilton’s equations,
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T =
Pk
. OH
P = ozn
for k =1,...,n, in a different way. Define a unified name for our 2n coordinates,
§a = (zi,p5)
for A=1,...,2n. That is, more explicitly,
& o= o
§nti = Di

We may immediately write the left side of both of Hamilton’s equations at once as

€a = (&4, p;)



The right side of the equations involves all of the terms

sex = (on )
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but there is a difference of a minus sign between the two equations and the interchange of x; and p;,. We
handle this by introducing a matrix called the symplectic form,

0 1
QAB—(_1 0)

[Hij = dij
is the n x n identity matrix. Then, using the summation convention, Hamilton’s equations take the form of
a single expression,

where
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We may check this by writing it out explicitly,
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In the example above, we have £ = 01,& = 65,&3 = p1; and 4 = p2. In terms of these, the Hamiltonian
may be written as
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Hamilton’s equations are
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so that
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as expected.

3.1 Properties of the symplectic form
We note a number of important properties of the symplectic form. First, it is antisymmetric,
Q= —Q
Qap = —Qpa

and it squares to minus the 2n-dimensional identity,
0 1 0 1 _ -1 0
-1 0 -1 0 o 0 -1

We also have

since 2 = —Q, and therefore Q0! = Q (—Q) = —Q2 = 1. Since all components of Q45 are constant, it is
also true that

0
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This last condition does not hold in every basis, however.

The defining properties of the symplectic form, necessary and sufficient to guarantee that it has the
properties we require for Hamiltonian mechanics are that it be a 2n x 2n matrix satisfying two properties
at each point of phase space:

1. 92 =-1
2. 04QBc +0BQca +0cQap =0

The first of these is enough for there to exist a change of basis so that Qa5 = < _01 (1) > at any given

point, while the vanishing combination of derivatives insures that this may be done at every point of phase
space.

3.2 Conservation and cyclic coordinates

From the relationship between the Lagrangian and the Hamiltonian,

H = pzxz - L
we see that
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If the coordinate x; is cyclic, % = 0, then the corresponding Hamilton equation reads
. OH
pi = oz,
=0

and the conjugate momentum

_ 0L
- Oy
is conserved, so the relationship between cyclic coordinates and conserved quantities still holds.

Since the Lagrangian is independent of p;, depending only on x; and &;, we also have a corresponding
statement about momentum. Suppose some momentum, p;, is cyclic in the Hamiltonian,
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Then from either Hamilton’s equations or from the relationship between the Hamiltonian and the Lagrangian,
we immediately have
;=0

so that the coordinate z; is a constant of the motion.

Suppose we have a cyclic coordinate, say x,. Then the conserved momentum takes its initial value, py,y,
and the Hamiltonian is

H=H (z1,...%y1; P1,- - Pn—1,Pn0)

and therefore immediately becomes a function of n — 1 variables. This is simpler than the Lagrangian case,
where constancy of p,, makes no immediate simplification of the Lagrangian.

Example 1: As a simple example, consider the 2-dimensional Kepler problem, with Lagrangian

1 . M
L=-m (r‘2 +r292> L eM
2 r

The coordinate 6 is cyclic and therefore
oL

=2 =
is conserved, but this quantity does not explicitly occur in the Lagrangian. However, the Hamiltonian is

1 2 M
H:<pg_~_pe)_G
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S0 pg =l is constant and we immediately have

2

2m Pr r2 T

Example 2 (problem 21a): Consider a flywheel of mass M and radius a, its center fixed . A rod of
length a is attached to the perimeter with its other end constrained to lie on a horizontal line through the
center of the flywheel, and is attached to the massless rod of a simple pendulum of length [ and mass m.
Find the Hamiltonian.

First, find L,

1 1
T = 5mv2 + §I<p2
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where ¢ (t) is the angular velocity of the flywheel and

M 2 2, .2 2
I3 = 7Tazd/(x +y“+z fz)dxdydz

M

= 3 (ac2 + y2) dxdy
M
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1
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while the velocity of the pendulum bob is the combination of the swinging, 16, and the oscillatory motion of
the suspension point, located at 2a coswt. With the postion of m given by

= 2acosp+lsind
= lcosf
the velocity has components
& = —2apsing + 160 cosb
Yy = —1fsin6
Therefore,
1 1
T = 5mv2 + §I<p2
1y . 1 :
= im (x2 + y2) + ZMCLQQOQ
1 . . 1
= 3m <4a2gb2 sin? ¢ — 4algfsin pcosh + 1202) + ZMa2¢72
and the potential is simply
V = —mglcost

up to an arbitrary constant. Therefore,
1 . . 1
L= 5m (4a2¢72 sin? ¢ — dalgf sin @ cos 6 + 1292> + ZMaz(,b2 + mgl cos 6

To find the Hamiltonian, we first find the conjugate momenta,

0L

P = Y]
= mil*6— 2malp sin p cos 0
0L

P = %

= 4ma®¢sin® p — 2malf sin pcosf + %Mang
Next, find the Hamiltonian in terms of both velocities and momenta,
H = (m129 — 2maly sin cp) 6+ (4ma2gb sin? o — 2malf sin ¢ + ;Mang) %)
1 2.2 . 2 i 242 Ly 2.9
—5m (4a P~ sin® p — 4alpfsin p + 1“0 ) - ZMa $° —mgl cos 6

1 . . 1
= §m1292 — 2malpB sin p + 2ma?p? sin® p + ZMazc,b2 —mgl cosf
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Finally, solve for the velocities and eliminate them from H,

o pe | 2ap
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2a¢ . 2. 2 1 2.
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2apy . 2. . 2 Ly o, 2. 2
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H = §ml292 — 2malh sin p + 2ma?p? sin® p + ZMagc,b2 — mgl cos 6
1 8m 2 8singp 8m . 16 ,
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1 4 2 4sin 16sin? ¢ 9 ]
+<2ma sin? <p—|—4Ma ) (M2 7P + Vo 5P i Py + a212M2p‘9 — mgl cos 6

1 8m ., o 2 o 4sing
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4sin 1_’_8m 9 8sin” ¢ 1_~_8m . 9 8m . 9 32m . 3
— —sin — —-sin - — sin® p — —— sin
Mila M ¥ | PpPo M2 M ¥ | PoDo M2a2p<pptp ¥ Mzalpapga ®

8m 1 9 32msin® ¢ 4sing 32msint o 4sin? ¢ 9
+<M2 T72a S Ma2 )pw—i-( M2 T anr ) PePe T T pg — myl cos 6

8m 2 8m 2 .2
1+Msm %) p¢p9+mp@8m %)

4 Note

My computer has swallowed the next ten pages of notes. Instead of rewriting it all now, I am copying relevant
sections of my Mechanics book. I'll try to fill in any missing details.

5 Phase space and the symplectic form

We now explore some of the properties of phase space and Hamilton’s equations.
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One advantage of the Hamiltonian formulation is that there is now one equation for each initial condition.
This gives the space of all ¢s and ps a uniqueness property that configuration space (the space spanned by the
gs only) doesn’t have. For example, a projectile which is launched from the origin. Knowing only this fact,
we still don’t know the path of the object — we need the initial velocity as well. As a result, many possible
trajectories pass through each point of configuration space. By contrast, the initial point of a trajectory in
phase space gives us both the initial position and the initial momentum. There can be only one path of the
system that passes through that point.

Systems with any number of degrees of freedom may be handled in this way. If a system has N degrees of
freedom then its phase space is the 2/N-dimensional space of all possible values of both position and momen-
tum. We define configuration space to be the space of all possible postions of the particles comprising the
system, or the complete set of possible values of the degrees of freedom of the problem. Thus, configuration
space is the N-dimensional space of all values of ¢;. By momentum space, we mean the N-dimensional space
of all possible values of all of the conjugate momenta. Hamilton’s equations then consist of 2N first order
differential equations for the motion in phase space.

We illustrate these points with the simple example of a one dimensional harmonic oscillator.

Let a mass, m, free to move in one direction, experience a Hooke’s law restoring force, F' = —kx. Solve
Hamilton’s equations and study the motion of system in phase space. The Lagrangian for this system is
L = T-V
1 ., 1,
= —ma° — -k
2 2
The conjugate momentum is just
oL .
= —=mz
P= i
so the Hamiltonian is
H = pit—-1L
2
p L oo 1, 5
= ——-mi“+ -kx
m 2 + 2
2
p L, o
= ——+ ko
2m 2
Hamilton’s equations are
: OH _p
x = _ =
op m
OH
) = —— = —kx
P or
oH oL 0
oo ot
Note that Hamilton’s equations are two first-order equations. From this point on the coupled linear equations
p = —kx
. p
T = —
m

may be solved in any of a variety of ways. Let’s treat it as a matrix system,

d [z L x

il = m 1

dt ( p ) ( —k ) < p ) .
-k ) has eigenvalues w = (, / %, —4/ 1’;) and diagonalizes to

0 1w

The matrix M = (

4
m
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where
4 - 1 (i\/km 1)
2ivkm \ twWkm -1
a1 -1 -1
—ivkm ivkm
k

w = —
m

Therefore, multiplying eq.(1) on the left by A and inserting 1 = A1 A,

i (5) =4 7 ) (s) ”

we get decoupled equations in the new variables:

a 5 (2 — 22
() (o

The decoupled equations are

or simply
a = —iwa
o = —iwal
with solutions
a = age !
al = a:f]em
The solutions for z and p may be written as
Tr = xgcoswt+ Po sin wt
mw
p = —mwzxgsinwt + pgcoswt

Notice that once we specify the initial point in phase space, (xo,po), the entire solution is determined. This
solution gives a parameterized curve in phase space. To see what curve it is, note that

m2wlr? »? m2w2s? »?

- 2 2052 72 2 20,272

2mE 2mE py + miwrxg  pg + mAwiag
m2w?

Do . 2
= 5T 5 5.3 \ToCos wt + — sinwt
Py + meiw=zy mw

1 . 2
+—5—5 55 (—mwrgsinwt + pg cos wt)
Py + mAw=zj
m2w?ad D3
p3 4+ m2w?xd Pt + miPw?a}

=1
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or
2

m2w?a? —i—p2 =2mFE
This describes an ellipse in the xp plane. The larger the energy, the larger the ellipse, so the possible motions
of the system give a set of nested, non-intersecting ellipses. Clearly, every point of the xp plane lies on exactly
one ellipse.

The phase space description of classical systems are equivalent to the configuration space solutions and
are often easier to interpret because more information is displayed at once. The price we pay for this is
the doubled dimension — paths rapidly become difficult to plot. To ofset this problem, we can use Poincaré
sections — projections of the phase space plot onto subspaces that cut across the trajectories. Sometimes the
patterns that occur on Poincaré sections show that the motion is confined to specific regions of phase space,
even when the motion never repeats itself. These techniques allow us to study systems that are chaotic,
meaning that the phase space paths through nearby points diverge rapidly.

Now consider the general case of N degrees of freedom. Let

¢t = (¢',p))

where A = 1,...,2N. Then the 2N variables £ provide a set of coordinates for phase space. We would like
to write Hamilton’s equations in terms of these, thereby treating all 2V directions on an equal footing.

In terms of ¢4, we have
@ (o
at Py

OH
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= _“8nm
oqi

ap 90
DEB

QAB QAB

where the presence of in the last step takes care of the difference in signs on the right. Here is

just the inverse of the symplectic form found from the curl of the dilatation, given by

0 o
AB _ . 7
. < 5 0 )

Its occurrence in Hamilton’s equations is an indication of its central importance in Hamiltonian mechanics.
We may now write Hamilton’s equations as

@ — QA367H

dt o¢B 5)

Consider what happens to Hamilton’s equations if we want to change to a new set of phase space
coordinates, x4 = x4 (£). Let the inverse transformation be ¢4 (x). The time derivatives become

et 0gt dx”
dt — O0xB dt
while the right side becomes

QAB87H _ AB ox“ OH
0B OEB 9xC

Equating these expressions,
9t dx® X" OH
oxB dt 0EB oxP
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we multiply by the Jacobian matrix, g’g—j to get

OX° 0¢" dx®  _ OX apOx” OH
OEA OxB dt 0EA 0¢B oy P
5C dx® X% apx” 0H
Boat o¢A dEB oxP

and finall
’ dx® _ ox“ Japox” 0H
dt — 0EA OEB O\ P

Defining the symplectic form in the new coordinate system,

~ ox°© P
cD _ AB
Q 85’49 (%B

we see that Hamilton’s equations are entirely the same if the transformation leaves the symplectic form
invariant,

QCD _ QCD
Any linear transformation M4 g leaving the symplectic form invariant,
AB _ jrA B (CD
0% =M M” 5Q

is called a symplectic transformation. Coordinate transformations which are symplectic transformations at
each point are called canonical. Therefore those functions x4 (¢) satisfying

ox“ x>
CD _ AB
@ 8{“‘ 2ea 0& 9¢B

are canonical transformations. Canonical transformations preserve Hamilton’s equations.

5.1 Poisson brackets

We may also write Hamilton’s equations in terms of the Poisson brackets. Recall that the Poisson bracket
of any two dynamical variables f and g is given by

af 9y
OEA DEB
The importance of this product is that it too is preserved by canonical transformations. We see this as
follows.
Let &4 be any set of phase space coordinates in which Hamilton’s equations take the form of eq.(5), and

let f and ¢ be any two dynamical variables, that is, functions of these phase space coordinates, 4. The
Poisson bracket of f and g is given above. In a different set of coordinates, x* (¢), we have

of 39
o _ a9l

g (25 01 (5 29
OxA 06C ) \ OxB ogP

(5509 B8€D> of g

DA 9£C 9¢D

{ } QAB

Therefore, if the coordinate transformation is canonical so that

o¢e ap 0P cD
x4 At 6)( =0
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then we have of
{f,g}/ = QAB@(%% = {f79}

and the Poisson bracket is unchanged. We conclude that canonical transformations preserve all Poisson
brackets.

An important special case of the Poisson bracket occurs when one of the functions is the Hamiltonian.
In that case, we have

of O0H
_ oAB 9] 01
{va} = Q 65’4853
of oH  of 0H
ozt Op;  Op' Ox;

_ ofdit Of (_de)

ox' dt  dp dt
_ 4 _of
ot ot
or simply, " of
5% {fH} + N

This shows that as the system evolves classically, the total time rate of change of any dynamical variable is
the sum of the Poisson bracket with the Hamiltonian and the partial time derivative. If a dynamical variable
has no explicit time dependence, then % = 0 and the total time derivative is just the Poisson bracket with
the Hamiltonian.

The coordinates now provide a special case. Since neither z? nor p; has any explicit time dependence,
with have

dat
dt
dp;
dt

= ()

= {H,pi} (6)
and we can check this directly:

W~ {ma)

dt
oy (omonton
B O0x3 Op;  Op; Ox7

B ié OH
- il
=
0H
Ipi

and

dp;
dt

= {vai}

_ i(@piwfﬁpiaﬂ)

= aq]‘ 6pj 6‘pj ﬁqj

_O0H
dq;
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Notice that since ¢;, p; and are all independent, and do not depend explicitly on time, ng; = gfl’ Lt =90
J J

9qi _ Opi
ot — ot " .
Finally, we define the fundamental Poisson brackets. Suppose z* and p; are a set of coordinates on

phase space such that Hamilton’s equations hold in the either the form of eqs.(6) or of egs.(5). Since they
themselves are functions of (z™, p,,) they are dynamical variables and we may compute their Poisson brackets
with one another. With é4 = (2™, p,,) we have

o ozt O0z7
i _ AB bl
{x 796]}5 - agA afB
_ zN: Ozt Oxd B ox' Oxl
o dz™ Opy,  Opp, O™

=1

for ¥ with 27,
ke = 0 e ge

_ i o’ Op; B oxt Op;
- ox™ Opy,  Opp, O™

for z* with p; and finally

Ipi Op;
AB

_ i (52?@ 9p; _ Opi 8pj)

= oz™ Opp, B Opm, Ox™
=0

for p; with p;. The subscript £ on the bracket indicates that the partial derivatives are taken with respect
to the coordinates ¢4 = (SCZ, pj) . We summarize these relations as

{§A7£B}£ _ QAB

We summarize the results of this subsection with a theorem: Let the coordinates £ be canonical. Then
a transformation x* (£) is canonical if and only if it satisfies the fundamental bracket relation

{XAaXB}E _ QAB
For proof, note that the bracket on the left is defined by

x4 oxB
A By _ CD
A 96C 9D

so in order for x4 to satisfy the canonical bracket we must have

oxA oxP
cp _ OAB
0EC peP 0 (7)

18



which is just the condition shown above for a coordinate transformation to be canonical. Conversely, suppose
the transformation x* (£) is canonical and {£4,£8} £ = QA8 Then eq.(7) holds and we have

X xPl =9

9EC o¢P

so x* satisfies the fundamental bracked relation.
In summary, each of the following statements is equivalent:

1. x2 (¢) is a canonical transformation.

op Ox 0x”

_ OAB

2. x4 (€) is a coordinate transformation of phase space that preserves Hamilton’s equations.

3. x4 (&) preserves the symplectic form, according to

4. x4 () satisfies the fundamental bracket relations

ap 069 062 op
XA oXE
ox? ox B
A B _ 0OCD
{X » X }5 =0 850 3£D

These bracket relations represent a set of integrability conditions that must be satisfied by any new set of
canonical coordinates. When we formulate the problem of canonical transformations in these terms, it is not
obvious what functions ¢* (:Ej,pj) and 7; (:rj,pj) will be allowed. Fortunately there is a simple procedure
for generating canonical transformations, which we develop in the next section.

We end this section with three examples of canonical transformations.

5.1.1 Example 1: Coordinate transformations

Let the new configuration space variable, ¢°, be and an arbitrary function of the spatial coordinates:

and let 7; be the momentum variables corresponding to ¢'.
bracket relations iff:

Check each:
{ql7 qJ }z,p
since g%- = 0. For the second bracket,
0]

{qi’qj}:x,p =0
{qi77rj}gc7p = 5;
{ﬂ—i”n—j}m,p == 0
B i oq* O¢7 B oq" O¢
o — ox™ Opyy  Opm O™
= 0
{qi’ﬂ—j}z,p
N i i
Z 0q¢* Om;j B 0q¢* Om;
= dz™ Op,,  Opp, O™
Ot omy

ox™ Opy,

3
I

¢ =q ()
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Since ¢* is independent of p,,, we can satisfy this only if

Omy _ 0a
Opm O

Integrating gives

;= a—qun—&—cj

with ¢; an arbitrary constant. The presence of c¢; does not affect the value of the Poisson bracket. Choosing
c; =0, we compute the final bracket:

N
{mi, it = Z

87ri 67‘(']' _ 8771- 67rj
dz™ Opy,  Opp, O™

02x™ oxr™ B oz™ 9%x"
meaqip" O¢  O¢* OxmIg bn
0

™ 0 Ox" _83:7" 0 8i"
O¢? dx™ ¢’ oq* 0x™ OgJ Pn

oo oo
¢y 0¢*  0q* OqJ bn

Therefore, the transformations

¢ = ¢
oz
;o= wpn—&—cj

is a canonical transformation for any functions ¢’(x). This means that the symmetry group of Hamilton’s
equations is at least as big as the symmetry group of the Euler-Lagrange equations.

5.1.2 Example 2: Interchange of x and p.

The transformation

)

qg = Pi
T, = —X

is canonical. We easily check the fundamental brackets:

{d.d},, = upd,,=0
a7}, = {2},

= ey,

= -‘r{l'j?pi}%p

= &
{mi,mj},, = {-a',—a’}, =0

Interchange of 2* and pj, with a sign, is therefore canonical. The use of generalized coordinates does not
include such a possibility, so Hamiltonian dynamics has a larger symmetry group than Lagrangian dynamics.
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For our last example, we first show that the composition of two canonical transformations is also canonical.

Let ¢ (x) and x (£) both be canonical. Defining the composition transformation, ¢ (§) = ¥ (x(£)), we
compute

QCD%% _ Q¢p (3¢A 3XE) (51/)3 5'XF>
0¢C 9¢b oxE o9¢C oxt ogb
_ 5'XE aXFQCD <5¢A) (&/JB)
0EC peb oxE oxt
- o ()%
OxE ox¥

QAB

so that ¥ (x (€)) is canonical.

5.1.3 Example 3: Momentum transformations

By the previous results, the composition of an arbitratry coordinate change with x, p interchanges is canon-

ical. Consider the effect of composing (a) an interchange, (b) a coordinate transformation, and (c) an
interchange.

For (a), let

qa = DPi

T, = —x

Then for (b) we choose an arbitrary function of ¢! :

Q= @ (d) =9 ®)

dqt Ipn
P, = My = — "
Q'™ T T o
Finally, for (c¢), another interchange:
7 apn n
™ o= —Q'=-Q"(p;)

This establishes that replacing the momenta by any three independent functions of the momenta, preserves
Hamilton’s equations.

5.2 Generating functions

There is a systematic approach to canonical transformations using generating functions. We will give a
simple example of the technique. Given a system described by a Hamiltonian H(xz*,p;), we seek another
Hamiltonian H'(q", ;) such that the equations of motion have the same form, namely

dx? _ OH
dt N 8pi
at — ox
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in the original system and

d¢¢ OH'
dt B 87ri

dﬂ',‘ o 6H/
a ¢

in the transformed variables. The principle of least action must hold for each pair:
/ (pidxi — Hdt)
/ (midq' — H'dt)

where S and S’ differ by at most a constant. Correspondingly, the integrands may differ by the addition of
a total differential, df = %dt, since this will integrate to a surface term and therefore will not contribute to
the variation. Notice that this corresponds exactly to a local dilatation, which produces a change

S

Sl

Wldz® = Wydz® —df
= Wydz® — ﬁdt
dt

In general we may therefore write
pidx’ — Hdt = m;dg' — H'dt + df
A convenient way to analyze the condition is to solve it for the differential df
df = pda’ — mdg" + (H' — H)dt

For the differential of f to take this form, it must be a function of x%, ¢’ and ¢, that is, f = f(z%,¢",1).
Therefore, the differential of f is

aof ., of . Of
df = ——dz' ~dq* + =dt
= 5™ T 5™ T+
Equating the expressions for df we match up terms to require
of
P Bl (8)
of
" o ©)
of
H = H+-— 10
"o 10)
The first equation o
of(a?, ¢, t)
; = , 11
p 5 (11)

gives ¢* implicitly in terms of the original variables, while the second determines 7;. Notice that we may pick
any function ¢’ = ¢*(p;, 27, t). This choice fixes the form of 7; by the eq.(9), while the eq.(10) gives the new
Hamiltonian in terms of the old one. The function f is the generating function of the transformation.

6 General solution in Hamiltonian dynamics
We conclude with the crowning theorem of Hamiltonian dynamics: a proof that for any Hamiltonian dynam-
ical system there exists a canonical transformation to a set of variables on phase space such that the paths

of motion reduce to single points. Clearly, this theorem shows the power of canonical transformations! The
theorem relies on describing solutions to the Hamilton-Jacobi equation, which we introduce first.
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6.1 The Hamilton-Jacobi Equation

We have the following equations governing Hamilton’s principal function.

oS

Ipi

aS

Oz, = Di

oS

ot
Since the Hamiltonian is a given function of the phase space coordinates and time, H = H(x;,p;,t), we
combine the last two equations:

= 0

= —-H

oS oS
a - _H(xiapi»t) - _H(xia T%,t)

This first order differential equation in s + 1 variables (¢,2;;¢ = 1,...s) for the principal function S is the
Hamilton-Jacobi equation. Notice that the Hamilton-Jacobi equation has the same general form as the
Schrédinger equation and is equally difficult to solve for all but special potentials. Nonetheless, we are
guaranteed that a complete solution exists, and we will assume below that we can find it. Before proving
our central theorem, we digress to examine the exact relationship between the Hamilton-Jacobi equation
and the Schrédinger equation.

6.2 Quantum Mechanics and the Hamilton-Jacobi equation

The Hamiltonian-Jacobi equation provides the most direct link between classical and quantum mechanics.
There is considerable similarity between the Hamilton-Jacobi equation and the Schrédinger equation:

oS oS
o —H (z, 87[:1-’”
oY .

Zha = H(&;,pit)

We make the relationship precise as follows.
Suppose the Hamiltonian in each case is that of a single particle in a potential:

H=P v

2m

Write the quantum wave function as

w:Aeﬁ%’
The Schrodinger equation becomes
9 (Aer® 2 , _
mi( ~ ) = f%w (4cte) + v (Act)
. v 2
zh%eé‘pf/le%‘”%—f = f;—mv <eﬁ“”VA+ Aeh“’vw>+VAeh
K2 o1 9
= ot ﬁVSDVAﬂLVA
_n ie (L Ao+ A
om ¢ hV vy 3 Ve
no(i\? .
“om (h) en? (A - Vp)
1V Aer®



Then cancelling the exponential,

. 0A Oy if R,
h——-A— = —— A—— A
or o om Y YNV AT oV
ih ih
—5 - VA Ve AV
m 2m
1
t5 - (AVe-ve)+VA
m
Collecting by powers of A,
Op 1
oy . _Y¥_ - .
1 0A 1 2
1 o - 2 A 2
0) o =-am (574 Vet v)
h2

O() : 0=-7- g4

The zeroth order terms is the Hamilton-Jacobi equation, with ¢ = S:

oS 1

o T g VS VStV
_ 1 2
= 5P + V()

where p = \/S. Therefore, the Hamilton-Jacobi equation is the i — 0 limit of the Schrédinger equation.

6.3 Trivialization of the motion

We now seek a solution, in principle, to the complete mechanical problem. The solution is to find a canonical
transformation that makes the motion trivial. Hamilton’s principal function, the solution to the Hamilton-
Jacobi equation, is the generating function of this canonical transformation.

To begin, suppose we have a solution to the Hamilton-Jacobi equation of the form

S=g(t,z1,...,x5,00,...,a5) + A

where the a; and A provide s + 1 constants describing the solution. Such a solution is called a complete
integral of the equation, as opposed to a general integral which depends on arbitrary functions. We will
show below that a complete solution leads to a general solution. We use S as a generating function.

Our canonical transformation will take the variables (z;,p;) to a new set of variables (ﬂi, ai) . Since §
depends on the old coordinates x; and the new momenta «;, we have the relations

s
pPi = o,
28
Gi = D,
2
o= g+2°
T

Notice that the new Hamiltonian, H’, vanishes because the Hamiltonian-Jacobi equation is satisfied by S!.
With H' = 0, Hamilton’s equations in the new canonical coordinates are simply

doy  OH' 0
a 08
g, _8H' _0
dt da;
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with solutions

a; = const.

B; = const.

The system remains at the phase space point (a;,3;). To find the motion in the original coordinates as
functions of time and the 2s constants of motion,

x; = xi(t; o, i)

we can algebraically invert the s equations

! 80@
The momenta may be found by differentiating the principal function,
o 8S(xi,t, O[i)
pi = 7@@

Therefore, solving the Hamilton-Jacobi equation is the key to solving the full mechanical problem. Fur-
thermore, we know that a solution exists because Hamilton’s equations satisfy the integrability equation for
S.

We note one further result. While we have made use of a complete integral to solve the mechanical
problem, we may want a general integral of the Hamilton-Jacobi equation. The difference is that a complete
integral of an equation in s + 1 variables depends on s + 1 constants, while a general integral depends on s
functions. Fortunately, a complete integral of the equation can be used to construct a general integral, and
there is no loss of generality in considering a complete integral. We see this as follows. A complete solution
takes the form

S=g(t,z1,...,T5,00,...,05) + A

To find a general solution, think of the constant A as a function of the other s constants, A(aq,...,as). Now
replace each of the «; by a function of the coordinates and time, o; — h;(¢, x;). This makes S depend on
arbitrary functions, but we need to make sure it still solves the Hamilton-Jacobi equation. It will provided
the partials of S with respect to the coordinates remain unchanged. In general, these partials are given by

os _ (08 (28 Ol
8.%1' a axl h;=const. 6hk r=const. 8.731'

We therefore still have solutions provided
2 ohe _,
ahk x=const. axi a

and since we want hy to be an arbitrary function of the coordinates, we demand

oS
(ahk>z—const. =0

Then 5 5
= = 75— (9t 2, 04) + A(oy)) =0
o= o (gt o) + Ala)
and we have
Ay, ...,a5) =const. — g

This just makes A into some specific function of 2’ and ¢.
Since the partials with respect to the coordinates are the same, and we haven’t changed the time depen-
dence,
S = g(t,l‘l,...,xs,hl,...,hs) +A(hz)

is a general solution to the Hamilton-Jacobi equation.

25



6.3.1 Example 1: Free particle

The simplest example is the case of a free particle, for which the Hamiltonian is

H= P
2m
and the Hamilton-Jacobi equation is
oS 1 2
(g
ot 2m (5)
Let
S =f(z)— Et

Then f(z) must satisfy

d

—f =V2mFE
dx

and therefore

fx) = V2mExz—c

= Txr—cC

where ¢ is constant and we write the integration constant E in terms of the new (constant) momentum.
Hamilton’s principal function is therefore
2
T
S(x,mt)=mx——t—c
(z,m,t) o

Then, for a generating function of this type we have

_ 95 _
b= 3x_7r
_ 95 _ T,
¢ = 37T_x m
oS
r o _ .
H = H+8t H-FE

Because ¥ = H, the new Hamiltonian, H’, is zero. This means that both ¢ and 7 are constant. The solution
for x and p follows immediately:

8
|

™
g+ —t
m

=

We see that the new canonical variables (g, 7) are just the initial position and momentum of the motion, and
therefore do determine the motion. The fact that knowing ¢ and = is equivalent to knowing the full motion
rests here on the fact that S generates motion along the classical path. In fact, given initial conditions (g, 7),
we can use Hamilton’s principal function as a generating function but treat 7 as the old momentum and x
as the new coordinate to reverse the process above and generate z(t) and p.

6.3.2 Example 2: Simple harmonic oscillator

For the simple harmonic oscillator, the Hamiltonian becomes

2
'Y 1. 5
H=-—+-k
2m+2 .
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and the Hamilton-Jacobi equation is

Letting

as before, f(x) must satisfy

and therefore

1 ranz? 1.2
ot = am )t gke
S =f(z)— Et
df\/Qm (Elkx2>

dzr 2

[ 2 (5~ bo2)

/ 1?2 — mkx?dx

where we have set E = 2. Now let v/mkz = 7 sin y. The integral is immediate:

2m”

f(=)

/ V2 — mkx?dx

/ cos? ydy

(y + siny cosy)

2

vVmk

2

2vVmk

Hamilton’s principal function is therefore

S (x,m,t)

- T sin ! (\/mkf)—i—\/m E\/l—mkx—2
 ovmk T T 2
~,
2m ¢
2 2
_ T 71(/ sz) TS m? — ke —
2\/n%sm m - + 5 s mkx o C

and we may use it to generate the canonical change of variable.

This time we have

9
Ox
1 L Tt g ke
2 1— kxi 2 2\/7r2—mk:332
1 2 9 oy mka?
w2 — mkax? <2+(7T —mka’) - 2
w2 — mka?
95
om
2
T . x T 1 T
T Vmk= ik —
msm ( " 7r) 2vmk 1—mkx2( mn 7T2)
2



Jr__ T 7
21?2 —mkz?2 m
T .4 x T
- VmkE) - Iy
Ny (m w) m
95

H = Ht o =H-E=0

The first equation relates p to the energy and position, the second gives the new position coordinate ¢, and
third equation shows that the new Hamiltonian is zero. Hamilton’s equations are trivial, so that = and ¢ are

constant, and we can invert the expression for ¢ to give the solution. Setting w = 4/ %, the solution is

T /Mmw
x(t) = —sm(—quwt)
mw 7T

= Asin (wt + ¢)
where

q = A

T = Amw

The new canonical coordinates therefore characterize the initial amplitude and phase of the oscillator.

6.3.3 Example 3: One dimensional particle motion

Now suppose a particle with one degree of freedom moves in a potential U(x). Little is changed. The the

Hamiltonian becomes )

H= 1y
2m
and the Hamilton-Jacobi equation is
95 _ _ L (9?4 ua)
ot 2m
Letting
S = f(z) - Et
as before, f(z) must satisfy
df
—=2m((E-U
" (E—U @)

and therefore
f@) = /\/Qm (=T (@))dz
/ V72 —2mU (x)dx

where we have set F = 2. Hamilton’s principal function is therefore

2m”
. 2
) ) = - YA
S (x,m,t) /\/77 2mU (z)dz 2mt c

and we may use it to generate the canonical change of variable.
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This time we have
oS

= —_— = 2 —

D o w2 —2mU (x)

0s 0 N T

= —_— = — 2 _ J—

q 5 = Bn (/wo V72 =2mU (z)dz mt

oS
4 = _— = — =
H = H+ En H-FE=0

The first and third equations are as expected, while for ¢ we may interchange the order of differentiation
and integration:

;(/Ww)-;:&
_ /%(m)dm_%t

<
|

™

B / wdz
V2 =2mU (z) m
To complete the problem, we need to know the potential. However, even without knowing U (z) we can make
sense of this result by combining the expression for ¢ above to our previous solution to the same problem.
There, conservation of energy gives a first integral to Newton’s second law,

p2

E = — 40U
2m+
1 dr\?

so we arrive at the familiar quadrature

r mdx
t—toz/dtZ/ _—
2o \/2m (E —=U)

Substituting into the expression for ¢,

¢ = /x wdx _1/” mdzx —lto
o T @ o ET) m

_ /w mdx _/w mdx —ito
VT2 =2mU (z)  Joy /72 —2mU () m

s

/ o wdx

- —_— ¢
V2 =2mU (x) m

We once again find that ¢ is a constant characterizing the initial configuration. Since t( is the time at which

the position is xy and the momentum is py, we have the following relations:

P’ I
+U(z) = +U =FE= .
(x) (x0) const

and

o dx
t—tg= | —— ——
20 (/2 (E—-U)
which we may rewrite as
dx
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