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We conclude with the crowning theorem of Hamiltonian dynamics: a proof that for any Hamiltonian
dynamical system there exists a canonical transformation to a set of variables on phase space such that the
paths of motion reduce to single points. Clearly, this theorem shows the power of canonical transformations!
The theorem relies on describing solutions to the Hamilton-Jacobi equation, which we introduce first.

1 Integrability of the action
We first define Hamilton’s principal function. Let xi (t) and pi (t) satisfy Hamilton’s equations of motion,
and ask for the integrability condition for the action. That is, we would like to know when the action is a
function and not a functional, S

[
xi (t)

]
⇒ S

(
xi, t

)
. The condition we need is just like the vanishing curl

of a force required for the existence of a potential function. Thinking of the n + 1 vectorPa = (pi,−H)
integrated along a curve in dXa =

(
xi, t

)
-space

S =

ˆ
pidx

i −Hdt =

ˆ
PadX

a

the integrability condition is the vanishing of the higher-dimensional curl,

∂Pa
∂Xb

− ∂Pb
∂Xa

= 0

Writing this in terms of pi, H, xj , t,

∂pi
∂xj
− ∂pj
∂xi

= 0

−∂H
∂xi
− dpi

dt
= 0

dpi
dt

+
∂H

∂xi
= 0

−∂H
∂t

+
∂H

∂t
= 0

The first is satisfied because xi and pj are independent, the middle two give one of Hamilton’s equations,
and the final equation is an identity. Therefore, S is a function if ṗi = − ∂H

∂xi .
The condition is not unique. Since we may integrate by parts,

S =

ˆ
pidx

i −Hdt

=

ˆ
d
(
pix

i
)
− xidpi −Hdt

= pix
i
∣∣t1
t0
−
ˆ (

xidpi +Hdt
)
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a similar argument applied to
´ (
xidpi +Hdt

)
shows that ẋi = ∂H

∂pi
gives integrability. Therefore, if the

family of curves,
(
xi (t) , pj (t)

)
solve Hamilton’s equations, then evaluating the action on those curves gives

a function.
Exercise: Carry out the demonstration that S becomes a function if ẋi = ∂H

∂pi

2 The Hamilton-Jacobi equation
Conversely, suppose we replace the action with a function, S [x]→ S

(
xi, t

)
. Then

S
(
xi, t

)
=

ˆ
pidx

i −Hdt

implies

dS = pidx
i −Hdt

∂S
∂xi

dxi +
∂S
∂t
dt = pidx

i −Hdt

so that

pi =
∂S
∂xi

H
(
xi, pj , t

)
= −∂S

∂t

If we replace pj in the Hamiltonian, we get a differential equation for Hamilton’s principal function,

H

(
xi,

∂S
∂xj

, t

)
= −∂S

∂t

This is the Hamilton-Jacobi equation.

Example: Find the Hamilton-Jacobi equation for a simple harmonic oscillator Since the
Hamiltonian for the oscillator is

H =
p2

2m
+

1

2
kx2

the Hamilton-Jacobi equation is
1

2m

(
∂S
∂x

)
+

1

2
kx2 = −∂S

∂t

Partial differential equations have free functions in their solutions. Thus, while

∂2f

∂x2
− ∂2f

∂t2
= 0

has the solution
f (x, t) = ax+ by + c

it has the general solution
f (x, y) = g− (x+ t) + g+ (x− t)

for any two functions g±.
For the Hamilton-Jacobi equation, canonical transformations can help introduce arbitrary functions.

Suppose we have a solution for S of the form

S = g
(
xi, αj , t

)
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for some function g. Then a canonical transformation changes pidxi −Hdt by df , where f is the generating
function. This means that S

(
Xi, Pj , t

)
= g

(
xi, αj , t

)
+ f , where the new coordinates are Xi, Pj . Now let

f = f
(
Xi, αj

)
− xiαi

Then we have

αidx
i −Hdt = PidX

i −H ′dt+ df

= PidX
i −H ′dt− xidαi − αidxi +

∂f

∂Xi
dXi +

∂f

∂αi
dαi +

∂f

∂t
dt

=

(
Pi +

∂f

∂Xi

)
dXi +

(
∂f

∂αi
− xi

)
dαi + (H −H ′) dt

so that

Pi = −∂f (X,α)

∂Xi

xi =
∂f (X,α)

∂αi
H ′ = H

The Hamiltonian remains unchanged, the new coordinate Xi is found by inverting xi = ∂f(X,α)
∂αi

to find xi
as a function of the new coordinates and the constants αi. The new momentum Pi is an arbitrary function
of the new coordinates Xi, and the principal function becomes

S
(
Xi, t

)
= g

(
xi, αj , t

)
+ f

= g
(
xi (X,α (X,P )) , α (X,P ) , t

)
+ f

(
Xi, αj (X,P )

)
− xi (X,P )αi (X,P )

so the new form of the principal function depends on n arbitrary functions Pi (x, α).

3 The principal function as generator of a canonical transformation
Suppose we find Hamilton’s principal function, S

(
xi, t

)
. Its relationship to the momentum, pi = ∂S

∂xi ,
suggests that we may use it as a generating function for a canonical transformation, S

(
xi, Pj , t

)
= S

(
xi, t

)
.

This turns out to be especially useful.
We choose a generating function with independent variables xi, Pj , so let

f = −XiPi + S
(
xi, t

)
Then we have

pidx
i −Hdt = PidX

i −H ′dt+ df

= PidX
i −H ′dt−XidPi − PidXi +

∂S
∂xi

dxi +
∂S
∂Pi

dPi +
∂S
∂t
dt

=

(
∂S
∂xi
− pi

)
dxi +

(
∂S
∂Pi
−Xi

)
dPi +

(
H +

∂S
∂t
−H ′

)
dt

so that the independent variables are now
(
xi, Pi, t

)
, satisfying

Xi =
∂S
∂Pi

= 0

pi =
∂S
∂xi

H ′ = H +
∂S
∂t
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But we know that

∂S
∂xi

= pi

∂S
∂pi

= 0

∂S
∂t

= −H

so that H ′ = 0.
The principal function has generated a transformation to a set of canonical variables for which the

Hamiltonian vanishes! This makes Hamilton’s equations trivial:

Ẋi = 0

Ṗi = 0

so
(
Xi, Pj

)
simply stay at their initial values.

4 Examples

4.1 Example 1: Free particle
The simplest example is the case of a free particle, for which the Hamiltonian is

H =
p2

2m

and the Hamilton-Jacobi equation is
∂S

∂t
= − 1

2m
(S′)

2

Let
S = f(x)− Et

Then f(x) must satisfy
df

dx
=
√

2mE

and therefore

f(x) =
√

2mEx− c
= πx− c

where c is constant and we write the integration constant E in terms of the new (constant) momentum.
Hamilton’s principal function is therefore

S (x, π, t) = πx− π2

2m
t− c

Then, for a generating function of this type we have

p =
∂S

∂x
= π

q =
∂S

∂π
= x− π

m
t

H ′ = H +
∂S

∂t
= H − E
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Because E = H, the new Hamiltonian, H ′, is zero. This means that both q and π are constant. The solution
for x and p follows immediately:

x = q +
π

m
t

p = π

We see that the new canonical variables (q, π) are just the initial position and momentum of the motion, and
therefore do determine the motion. The fact that knowing q and π is equivalent to knowing the full motion
rests here on the fact that S generates motion along the classical path. In fact, given initial conditions (q, π),
we can use Hamilton’s principal function as a generating function but treat π as the old momentum and x
as the new coordinate to reverse the process above and generate x(t) and p.

4.2 Example 2: Simple harmonic oscillator
For the simple harmonic oscillator, the Hamiltonian becomes

H =
p2

2m
+

1

2
kx2

and the Hamilton-Jacobi equation is

1

2m

(
∂S
∂x

)2

+
1

2
kx2 = −∂S

∂t

Setting S = f (x)− Et then

1

2m

(
df

dx

)2

+
1

2
kx2 = E

df

dx
=

√
2mE −mkx2

and direct integration (see examples, below) give a solution for S,

f =

ˆ √
2mE −mkx2dx

=
√

2mE

ˆ √
1− k

2E
x2dx

so with
√

k
2Ex = sinµ we have

f =
√

2mE

ˆ √
1− k

2E
sin2 µ

√
2E

k
cosµdµ

=
2E

ω

ˆ
cos2 µdµ

=
2E

ω

ˆ
1

2
(1 + cos 2µ) dµ

=
E

ω

(
µ+

1

2
sin 2µ

)
=

E

ω

(
sin−1

√
k

2E
x+ sin

(
sin−1

√
k

2E
x

)
cos

(
sin−1

√
k

2E
x

))

=
E

ω

(
sin−1

√
k

2E
x+

√
k

2E
x

√
1− k

2E
x2

)
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∂S

∂t
= − 1

2m
(S′)

2
+

1

2
kx2

Letting
S = f(x)− Et

as before, f(x) must satisfy
df

dx
=

√
2m

(
E − 1

2
kx2
)

and therefore

f(x) =

ˆ √
2m

(
E − 1

2
kx2
)
dx

=

ˆ √
π2 −mkx2dx

where we have set E = π2

2m . Now let
√
mkx = π sin y. The integral is immediate:

f(x) =

ˆ √
π2 −mkx2dx

=
π2

√
mk

ˆ
cos2 ydy

=
π2

2
√
mk

(y + sin y cos y)

Hamilton’s principal function is therefore

S (x, π, t) =
π2

2
√
mk

(
sin−1

(√
mk

x

π

)
+
√
mk

x

π

√
1−mkx

2

π2

)

− π
2

2m
t− c

=
π2

2
√
mk

sin−1
(√

mk
x

π

)
+
x

2

√
π2 −mkx2 − π2

2m
t− c

and we may use it to generate the canonical change of variable.
This time we have

p =
∂S

∂x

=
π

2

1√
1−mk x2

π2

+
1

2

√
π2 −mkx2 +

x

2

−mkx√
π2 −mkx2

=
1√

π2 −mkx2

(
π2

2
+

1

2

(
π2 −mkx2

)
− mkx2

2

)
=

√
π2 −mkx2

q =
∂S

∂π

=
π√
mk

sin−1
(√

mk
x

π

)
+

π2

2
√
mk

1√
1−mk x2

π2

(
−
√
mk

x

π2

)
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+
x

2

π√
π2 −mkx2

− π

m
t

=
π√
mk

sin−1
(√

mk
x

π

)
− π

m
t

H ′ = H +
∂S

∂t
= H − E = 0

The first equation relates p to the energy and position, the second gives the new position coordinate q, and
third equation shows that the new Hamiltonian is zero. Hamilton’s equations are trivial, so that π and q are
constant, and we can invert the expression for q to give the solution. Setting ω =

√
k
m , the solution is

x (t) =
π

mω
sin
(mω
π
q + ωt

)
= A sin (ωt+ φ)

where

q = Aφ

π = Amω

The new canonical coordinates therefore characterize the initial amplitude and phase of the oscillator.

4.3 Example 3: One dimensional particle motion
Now suppose a particle with one degree of freedom moves in a potential U(x). Little is changed. The the
Hamiltonian becomes

H =
p2

2m
+ U

and the Hamilton-Jacobi equation is
∂S

∂t
= − 1

2m
(S′)

2
+ U(x)

Letting
S = f(x)− Et

as before, f(x) must satisfy
df

dx
=
√

2m (E − U (x))

and therefore

f(x) =

ˆ √
2m (E − U (x))dx

=

ˆ √
π2 − 2mU (x)dx

where we have set E = π2

2m . Hamilton’s principal function is therefore

S (x, π, t) =

ˆ √
π2 − 2mU (x)dx− π2

2m
t− c

and we may use it to generate the canonical change of variable.
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This time we have

p =
∂S

∂x
=
√
π2 − 2mU (x)

q =
∂S

∂π
=

∂

∂π

(ˆ x

x0

√
π2 − 2mU (x)dx

)
− π

m
t

H ′ = H +
∂S

∂t
= H − E = 0

The first and third equations are as expected, while for q we may interchange the order of differentiation
and integration:

q =
∂

∂π

(ˆ √
π2 − 2mU (x)dx

)
− π

m
t

=

ˆ
∂

∂π

(√
π2 − 2mU (x)

)
dx− π

m
t

=

ˆ
πdx√

π2 − 2mU (x)
− π

m
t

To complete the problem, we need to know the potential. However, even without knowing U(x) we can make
sense of this result by combining the expression for q above to our previous solution to the same problem.
There, conservation of energy gives a first integral to Newton’s second law,

E =
p2

2m
+ U

=
1

2
m

(
dx

dt

)2

+ U

so we arrive at the familiar quadrature

t− t0 =

ˆ
dt =

ˆ x

x0

mdx√
2m (E − U)

Substituting into the expression for q,

q =

ˆ x πdx√
π2 − 2mU (x)

− π

m

ˆ x

x0

mdx√
2m (E − U)

− π

m
t0

=

ˆ x πdx√
π2 − 2mU (x)

−
ˆ x

x0

πdx√
π2 − 2mU (x)

− π

m
t0

=

ˆ x0 πdx√
π2 − 2mU (x)

− π

m
t0

We once again find that q is a constant characterizing the initial configuration. Since t0 is the time at which
the position is x0 and the momentum is p0, we have the following relations:

p2

2m
+ U(x) =

p20
2m

+ U(x0) = E = const.

and
t− t0 =

ˆ x

x0

dx√
2
m (E − U)

which we may rewrite as

t−
ˆ x dx√

2
m (E − U)

= t0 −
ˆ x0 dx√

2
m (E − U)

=
m

π
q = const.
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4.4 Example 4: Two dimensional oscillator
Suppose we have a mass fastened to a spring, moving on a tabletop, so that action is

S =

ˆ (
1

2
m
(
ṙ2 + r2ϕ̇2

)
− 1

2
kr2
)

The canonical momenta are

pr = mṙ

pϕ = mr2ϕ̇

so the Hamiltonian is

H =
1

2
m
(
ṙ2 + r2ϕ̇2

)
+

1

2
kr2

H =
1

2m

(
p2r +

p2ϕ
r2

)
+

1

2
kr2

The Hamilton-Jacobi equation is

1

2m

((
∂S
∂r

)2

+
1

r2

(
∂S
∂ϕ

)2
)

+
1

2
kr2 = −∂S

∂t

Let S = f (r, ϕ)− Et so that

1

2m

((
∂S
∂r

)2

+
1

r2

(
∂S
∂ϕ

)2
)

+
1

2
kr2 = E

Now use separation of variables. Let
f = R (r) + Φ (ϕ)

Then (
dR

dr

)2

+
1

r2

(
dΦ

dϕ

)2

+ kmr2 = 2mE(
dR

dr

)2

+ kmr2 − 2mE = − 1

r2

(
dΦ

dϕ

)2

−r2
(
dR

dr

)2

− kmr4 + 2mEr2 =

(
dΦ

dϕ

)2

Since the left side depends only on r and the right only on ϕ, each side must equal some constant, a2:

−r2
(
dR

dr

)2

− kmr4 + 2mEr2 − a = 0

dΦ

dϕ
= ±a

We immediately have
Φ = ±aϕ+ b

and we may integrate to find R:

dR

dr
=

√
−kmr2 + 2mE − a

r2

R =

ˆ √
2mE − kmr2 − a

r2
dr
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