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1 Solving the equation of motion
We have shown that the action for any two body system acted on by a central force may be written as

S =

tˆ

0

(
1

2
µ
(
ṙ2 + r2ϕ̇2

)
− V (r)

)
dt

where µ = mM
M+m is the reduced mass and L = µr2ϕ̇ the conserved angular momentum.

The equation of motion was found to be

µr̈ − L2

µr3
+
∂V

∂r
= 0

but we work instead with the conserved energy,

E =
1

2
µ
(
ṙ2 + r2ϕ̇2

)
+ V (r)

=
1

2
µṙ2 +

L2

2µr2
+ V (r)

Notice that we may have E < 0. The energy is fixed by its initial value. Taking r = rmin for a bounded
orbit at t = 0,

E =
L2

2µr2min
+ V (rmin)

1.1 Additional conserved quantitites
From the angular momentum and the energy we may construct another conserved quantity. The time rate
of change of the unit vector ϕ̂ is given by

d

dt
ϕ̂ =

d

dt
(−i sinϕ+ j cosϕ)

= (−i cosϕ− j sinϕ) ϕ̇

= −ϕ̇r̂

and therefore, using L = µr2ϕ̇, we have

d

dt
ϕ̂ = − L

µr2
r̂

=
L

µα
F

=
d

dt

(
L

µα
p

)
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where the force is given by F = −GMm
r2 r̂ ≡ − α

r2 r̂and we have

d

dt

(
p− µα

L
ϕ̂
)
= 0

Therefore, Hamilton’s vector,

h = p− µα

L
ϕ̂

is conserved as a consequence of rotational invariance.
Since angular momentum is conserved, the product

A ≡ h× L

=
(
p− µα

L
ϕ̂
)
× L

= p× L− µα

L
ϕ̂× (r× p)

= p× L− µα

L
(r (ϕ̂ · p)− p (ϕ̂ · r))

= p× L− µα

L

(
µr2ϕ̇

)
r

= p× L− µαr

as also conserved. This is the Laplace-Runge-Lenz vector.

1.2 Solving using Hamilton’s vector
Choose the initial conditions so that at time t = 0 the particle lies at perihelion, rmin = b, atϕ = 0. This is
a turning point, so ṙ = 0 and

v = v0j = µbϕ̇0j

Then Hamilton’s vector is

h = p− µα

L
ϕ̂

=
(
µbϕ̇0 −

µα

L

)
j

At any later time,

(h · ϕ̂)initial = h · ϕ̂(
µbϕ̇0 −

µα

L

)
j · ϕ̂ =

(
p− µα

L
ϕ̂
)
· ϕ̂(

µbϕ̇0 −
µα

L

)
cosϕ = µrϕ̇− µα

L(
L

b
− µα

L

)
cosϕ =

L

r
− µα

L

and therefore

r =
L

µα
L +

(
L
b −

µα
L

)
cosϕ

=
L2

µα

1

1 +
(
L2

µαb − 1
)
cosϕ
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1.3 Fitting the constants
So far, our solution is expressed in terms of constants L and r0. It is convenient to define

r0 ≡ L2

µα

ε ≡ L2

µαb
− 1

so that the orbit equation takes the simpler form

r =
r0

1 + ε cosϕ

Then at ϕ = 0 and ϕ = π, r lies along the x axis, so the length of the semimajor axis is

2a =
r0

1 + ε
+

r0
1− ε

=
r0 (1− ε) + r0 (1 + ε)

1− ε2

=
2r0

1− ε2

a =
r0

1− ε2

Along the y axis we have the semi latus rectum, that is, the distance to the ellipse from the center of force
at the focus, perpendicular to the major axis,

2p =
r0

1 + ε cos π2
+

r0

1 + ε cos 3π
2

2p = 2r0

p = r0

For ε < 1 we have p. The semiminor axis has length b equal to the maximum y-coordinate, where y = r sinϕ.
Thus

y =
p sinϕ

1 + ε cosϕ

0 =
dy

dϕ

=
p cosϕ

1 + ε cosϕ
− −εp sin2 ϕ

(1 + ε cosϕ)
2

=
p cosϕ (1 + ε cosϕ) + εp sin2 ϕ

(1 + ε cosϕ)
2

=
p cosϕ+ εp cos2 ϕ+ εp sin2 ϕ

(1 + ε cosϕ)
2

Then

cosϕm = −ε

and therefore,

b =
p sinϕm

1 + ε cosϕm
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=
p
√
1− cos2 ϕm
1− ε2

= p

√
1− ε2
1− ε2

= a
√
1− ε2

The energy is

E =
L2

2µb2
+ V (b)

=
L2

2µb2
− α

b

Therefore,

L2

2µb2
− α

b
− E = 0

1

b
=

α±
√
α2 + 2EL

2

µ

L2

µ

1

b
=

αµ

L2

(
1 +

√
1 +

2EL2

α2µ

)

Therefore,

ε ≡ L2

µαb
− 1

=

√
1 +

2EL2

α2µ

and we have the solution in terms of energy and angular momentum,

r =
p

1 + ε cosϕ

ε =

√
1 +

2Ep

α

p =
L2

µα

a =
p

1− ε2

b = a
√
1− ε2
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