Central Forces II: Gravitation
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1 Solving the equation of motion

We have shown that the action for any two body system acted on by a central force may be written as
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where p = A’/’;f; is the reduced mass and L = ur2?¢ the conserved angular momentum.
The equation of motion was found to be
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Notice that we may have E < 0. The energy is fixed by its initial value. Taking r = r,,;, for a bounded
orbit at ¢t =0,
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1.1 Additional conserved quantitites

From the angular momentum and the energy we may construct another conserved quantity. The time rate
of change of the unit vector ¢ is given by
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where the force is given by F = —G%mf‘ = —zrand we have
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Therefore, Hamilton’s vector,
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is conserved as a consequence of rotational invariance.
Since angular momentum is conserved, the product
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as also conserved. This is the Laplace-Runge-Lenz vector.

1.2 Solving using Hamilton’s vector
Choose the initial conditions so that at time ¢ = 0 the particle lies at perihelion, 7,,;, = b, atyp = 0. This is
a turning point, so 7 = 0 and
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Then Hamilton’s vector is
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At any later time,
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1.3 Fitting the constants

So far, our solution is expressed in terms of constants L and rg. It is convenient to define
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so that the orbit equation takes the simpler form
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Then at ¢ = 0 and ¢ = 7, r lies along the z axis, so the length of the semimajor axis is
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Along the y axis we have the semi latus rectum, that is, the distance to the ellipse from the center of force
at the focus, perpendicular to the major axis,
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For € < 1 we have p. The semiminor axis has length b equal to the maximum y-coordinate, where y = rsin .
Thus
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The energy is
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