# Central Forces II: Gravitation 

November 4, 2014

## 1 Solving the equation of motion

We have shown that the action for any two body system acted on by a central force may be written as

$$
S=\int_{0}^{t}\left(\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \dot{\varphi}^{2}\right)-V(r)\right) d t
$$

where $\mu=\frac{m M}{M+m}$ is the reduced mass and $L=\mu r^{2} \dot{\varphi}$ the conserved angular momentum.
The equation of motion was found to be

$$
\mu \ddot{r}-\frac{L^{2}}{\mu r^{3}}+\frac{\partial V}{\partial r}=0
$$

but we work instead with the conserved energy,

$$
\begin{aligned}
E & =\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \dot{\varphi}^{2}\right)+V(r) \\
& =\frac{1}{2} \mu \dot{r}^{2}+\frac{L^{2}}{2 \mu r^{2}}+V(r)
\end{aligned}
$$

Notice that we may have $E<0$. The energy is fixed by its initial value. Taking $r=r_{\text {min }}$ for a bounded orbit at $t=0$,

$$
E=\frac{L^{2}}{2 \mu r_{\min }^{2}}+V\left(r_{\min }\right)
$$

### 1.1 Additional conserved quantitites

From the angular momentum and the energy we may construct another conserved quantity. The time rate of change of the unit vector $\hat{\varphi}$ is given by

$$
\begin{aligned}
\frac{d}{d t} \hat{\boldsymbol{\varphi}} & =\frac{d}{d t}(-\mathbf{i} \sin \varphi+\mathbf{j} \cos \varphi) \\
& =(-\mathbf{i} \cos \varphi-\mathbf{j} \sin \varphi) \dot{\varphi} \\
& =-\dot{\varphi} \hat{\mathbf{r}}
\end{aligned}
$$

and therefore, using $L=\mu r^{2} \dot{\varphi}$, we have

$$
\begin{aligned}
\frac{d}{d t} \hat{\boldsymbol{\varphi}} & =-\frac{L}{\mu r^{2}} \hat{\mathbf{r}} \\
& =\frac{L}{\mu \alpha} \mathbf{F} \\
& =\frac{d}{d t}\left(\frac{L}{\mu \alpha} \mathbf{p}\right)
\end{aligned}
$$

where the force is given by $\mathbf{F}=-\frac{G M m}{r^{2}} \hat{\mathbf{r}} \equiv-\frac{\alpha}{r^{2}} \hat{\mathbf{r}}$ and we have

$$
\frac{d}{d t}\left(\mathbf{p}-\frac{\mu \alpha}{L} \hat{\varphi}\right)=0
$$

Therefore, Hamilton's vector,

$$
\mathbf{h}=\mathbf{p}-\frac{\mu \alpha}{L} \hat{\boldsymbol{\varphi}}
$$

is conserved as a consequence of rotational invariance.
Since angular momentum is conserved, the product

$$
\begin{aligned}
\mathbf{A} & \equiv \mathbf{h} \times \mathbf{L} \\
& =\left(\mathbf{p}-\frac{\mu \alpha}{L} \hat{\boldsymbol{\varphi}}\right) \times \mathbf{L} \\
& =\mathbf{p} \times \mathbf{L}-\frac{\mu \alpha}{L} \hat{\boldsymbol{\varphi}} \times(\mathbf{r} \times \mathbf{p}) \\
& =\mathbf{p} \times \mathbf{L}-\frac{\mu \alpha}{L}(\mathbf{r}(\hat{\boldsymbol{\varphi}} \cdot \mathbf{p})-\mathbf{p}(\hat{\boldsymbol{\varphi}} \cdot \mathbf{r})) \\
& =\mathbf{p} \times \mathbf{L}-\frac{\mu \alpha}{L}\left(\mu r^{2} \dot{\varphi}\right) \mathbf{r} \\
& =\mathbf{p} \times \mathbf{L}-\mu \alpha \mathbf{r}
\end{aligned}
$$

as also conserved. This is the Laplace-Runge-Lenz vector.

### 1.2 Solving using Hamilton's vector

Choose the initial conditions so that at time $t=0$ the particle lies at perihelion, $r_{\min }=b, \operatorname{at} \varphi=0$. This is a turning point, so $\dot{r}=0$ and

$$
\mathbf{v}=v_{0} \mathbf{j}=\mu b \dot{\varphi_{0}} \mathbf{j}
$$

Then Hamilton's vector is

$$
\begin{aligned}
\mathbf{h} & =\mathbf{p}-\frac{\mu \alpha}{L} \hat{\boldsymbol{\varphi}} \\
& =\left(\mu b \dot{\varphi_{0}}-\frac{\mu \alpha}{L}\right) \mathbf{j}
\end{aligned}
$$

At any later time,

$$
\begin{aligned}
(\mathbf{h} \cdot \hat{\boldsymbol{\varphi}})_{\text {initial }} & =\mathbf{h} \cdot \hat{\boldsymbol{\varphi}} \\
\left(\mu b \dot{\varphi_{0}}-\frac{\mu \alpha}{L}\right) \mathbf{j} \cdot \hat{\boldsymbol{\varphi}} & =\left(\mathbf{p}-\frac{\mu \alpha}{L} \hat{\boldsymbol{\varphi}}\right) \cdot \hat{\boldsymbol{\varphi}} \\
\left(\mu b \dot{\varphi}_{0}-\frac{\mu \alpha}{L}\right) \cos \varphi & =\mu r \dot{\varphi}-\frac{\mu \alpha}{L} \\
\left(\frac{L}{b}-\frac{\mu \alpha}{L}\right) \cos \varphi & =\frac{L}{r}-\frac{\mu \alpha}{L}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
r & =\frac{L}{\frac{\mu \alpha}{L}+\left(\frac{L}{b}-\frac{\mu \alpha}{L}\right) \cos \varphi} \\
& =\frac{L^{2}}{\mu \alpha} \frac{1}{1+\left(\frac{L^{2}}{\mu \alpha b}-1\right) \cos \varphi}
\end{aligned}
$$

### 1.3 Fitting the constants

So far, our solution is expressed in terms of constants $L$ and $r_{0}$. It is convenient to define

$$
\begin{aligned}
r_{0} & \equiv \frac{L^{2}}{\mu \alpha} \\
\varepsilon & \equiv \frac{L^{2}}{\mu \alpha b}-1
\end{aligned}
$$

so that the orbit equation takes the simpler form

$$
r=\frac{r_{0}}{1+\varepsilon \cos \varphi}
$$

Then at $\varphi=0$ and $\varphi=\pi, r$ lies along the $x$ axis, so the length of the semimajor axis is

$$
\begin{aligned}
2 a & =\frac{r_{0}}{1+\varepsilon}+\frac{r_{0}}{1-\varepsilon} \\
& =\frac{r_{0}(1-\varepsilon)+r_{0}(1+\varepsilon)}{1-\varepsilon^{2}} \\
& =\frac{2 r_{0}}{1-\varepsilon^{2}} \\
a & =\frac{r_{0}}{1-\varepsilon^{2}}
\end{aligned}
$$

Along the $y$ axis we have the semi latus rectum, that is, the distance to the ellipse from the center of force at the focus, perpendicular to the major axis,

$$
\begin{aligned}
2 p & =\frac{r_{0}}{1+\varepsilon \cos \frac{\pi}{2}}+\frac{r_{0}}{1+\varepsilon \cos \frac{3 \pi}{2}} \\
2 p & =2 r_{0} \\
p & =r_{0}
\end{aligned}
$$

For $\varepsilon<1$ we have $p$. The semiminor axis has length $b$ equal to the maximum $y$-coordinate, where $y=r \sin \varphi$. Thus

$$
\begin{aligned}
y & =\frac{p \sin \varphi}{1+\varepsilon \cos \varphi} \\
0 & =\frac{d y}{d \varphi} \\
& =\frac{p \cos \varphi}{1+\varepsilon \cos \varphi}-\frac{-\varepsilon p \sin ^{2} \varphi}{(1+\varepsilon \cos \varphi)^{2}} \\
& =\frac{p \cos \varphi(1+\varepsilon \cos \varphi)+\varepsilon p \sin ^{2} \varphi}{(1+\varepsilon \cos \varphi)^{2}} \\
& =\frac{p \cos \varphi+\varepsilon p \cos ^{2} \varphi+\varepsilon p \sin ^{2} \varphi}{(1+\varepsilon \cos \varphi)^{2}}
\end{aligned}
$$

Then

$$
\cos \varphi_{m}=-\varepsilon
$$

and therefore,

$$
b=\frac{p \sin \varphi_{m}}{1+\varepsilon \cos \varphi_{m}}
$$

$$
\begin{aligned}
& =\frac{p \sqrt{1-\cos ^{2} \varphi_{m}}}{1-\varepsilon^{2}} \\
& =p \frac{\sqrt{1-\varepsilon^{2}}}{1-\varepsilon^{2}} \\
& =a \sqrt{1-\varepsilon^{2}}
\end{aligned}
$$

The energy is

$$
\begin{aligned}
E & =\frac{L^{2}}{2 \mu b^{2}}+V(b) \\
& =\frac{L^{2}}{2 \mu b^{2}}-\frac{\alpha}{b}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\frac{L^{2}}{2 \mu b^{2}}-\frac{\alpha}{b}-E & =0 \\
\frac{1}{b} & =\frac{\alpha \pm \sqrt{\alpha^{2}+2 \frac{E L^{2}}{\mu}}}{\frac{L^{2}}{\mu}} \\
\frac{1}{b} & =\frac{\alpha \mu}{L^{2}}\left(1+\sqrt{1+\frac{2 E L^{2}}{\alpha^{2} \mu}}\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\varepsilon & \equiv \frac{L^{2}}{\mu \alpha b}-1 \\
& =\sqrt{1+\frac{2 E L^{2}}{\alpha^{2} \mu}}
\end{aligned}
$$

and we have the solution in terms of energy and angular momentum,

$$
\begin{aligned}
r & =\frac{p}{1+\varepsilon \cos \varphi} \\
\varepsilon & =\sqrt{1+\frac{2 E p}{\alpha}} \\
p & =\frac{L^{2}}{\mu \alpha} \\
a & =\frac{p}{1-\varepsilon^{2}} \\
b & =a \sqrt{1-\varepsilon^{2}}
\end{aligned}
$$

