
Problem: Foucault Pendulum
A pendulum moves under the influence of gravity, suspended from a long cable with tension T. The equation
of motion is

T−mgk− 2mω × v = ma

where the centrifugal force makes only a slight change in the magnitude and direction of g,

|ω × (ω × r)| = ω2r cosα

with direction away from the axis of rotation.
Let the angle of oscillation of the pendulum be very small (and the supporting cable very long) so that

the arc of the pendulum is sufficiently close to horizontal motion. The net external force is the combined
effect of the tension and gravity, equal to a restoring force, mg sin θ, so

mg sin θ ≈ mgθ =
mg

L
Lθ

giving an effective Hooke’s law force with “spring” constant mg
L . The restoring force is therefore

T−mgk ≈ −mg
L
ρ (i cosϕ+ j sinϕ)

where ρ =
√
x2 + y2 and motion in the k direction is negligible. The velocity and angular velocity at latitude

α are

ω = ω (j cosα+ k sinα)
v = ẋi + ẏj

and the equation of motion becomes

−mg
L
ρ (i cosϕ+ j sinϕ)− 2mω (j cosα+ k sinα)× (ẋi + ẏj) = m (ẍi + ÿj + z̈k)

− g
L
xi− g

L
yj + 2ωẋk cosα− 2ωẋj sinα+ 2ωẏi sinα = ẍi + ÿj + z̈k

Equating like components,

− g
L
xi + 2ωẏi sinα = ẍi

− g
L
yj− 2ωẋj sinα = ÿj

2ωẋk cosα = z̈k

The z-direction may be ignored since any acceleration in this direction acts only as a mild perturbation on
the acceleration of gravity. We confirm later that ωẋ� g. Then we have

ẍ+
g

L
x = 2ω sinαẏ

ÿ +
g

L
y = −2ω sinαẋ

We present three ways of solving this system of equations.

Method 1: Explicit rotating frame

We first solve this by putting in a slow rotation in the xy plane. Let

x′ = x cosωpt− y sinωpt

y′ = x sinωpt+ y cosωpt
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Then:

ẋ′ = ẋ cosωpt− xωp sinωpt− ẏ sinωpt− yωp cosωpt

= (ẋ− yωp) cosωpt− (xωp + ẏ) sinωpt

ẏ′ = ẋ sinωpt+ xωp cosωpt+ ẏ cosωpt− yωp sinωpt

= (ẋ− yωp) sinωpt+ (xωp + ẏ) cosωpt

and

ẍ′ = (ẍ− ẏωp) cosωpt− (ẋ− yωp)ωp sinωpt− (ẋωp + ÿ) sinωpt− (xωp + ẏ)ωp cosωpt

=
(
ẍ− 2ẏωp − xω2

p

)
cosωpt−

(
ÿ + 2ẋωp − yω2

p

)
sinωpt

ÿ′ = (ẍ− ẏωp) sinωpt+ (ẋ− yωp)ωp cosωpt+ (ẋωp + ÿ) cosωpt− (xωp + ẏ)ωp sinωpt

=
(
ẍ− 2ẏωp − xω2

p

)
sinωpt+

(
ÿ + 2ẋωp − yω2

p

)
cosωpt

Now substitute into the equations of motion,

ẍ′ +
g

L
x′ = 2ω sinαẏ′

−
(
ÿ + 2ẋωp − yω2

p

)
sinωpt−

g

L
y sinωpt− (2ω sinαẋ− 2ω sinαyωp) sinωpt = − g

L
x cosωpt−

(
ẍ− 2ẏωp − xω2

p

)
cosωpt+ (2ω sinαxωp + 2ω sinαẏ) cosωpt

−
(
ÿ +

( g
L
− ω2

p − 2ω sinαωp

)
y + 2 (ω sinα+ ωp) ẋ

)
sinωpt = −

(
ẍ+

( g
L
− 2ω sinαωp − ω2

p

)
x− 2 (ω sinα+ ωp) ẏ

)
cosωpt

ÿ′ +
g

L
y′ = −2ω sinαẋ′(

ÿ +
( g
L
− ω2

p − 2ωωp sinα
)
y + 2 (ω sinα+ ωp) ẋ

)
cosωpt = −

(
ẍ+

( g
L
− 2ω sinαωp − ω2

p

)
x− 2 (ω sinα+ ωp) ẏ

)
sinωpt

and therefore, both equations are solved if

ÿ +
( g
L
− 2ω sinαωp − ω2

p

)
y + 2 (ω sinα+ ωp) ẋ = 0

ẍ+
( g
L
− 2ω sinαωp − ω2

p

)
x− 2 (ω sinα+ ωp) ẏ = 0

which decouples when we choose ωp to cancel the mixing term

ωp = −ω sinα

In this rotation frame, the equations of motion reduce to simple oscillation for both x and y,

ÿ + ω̃2y = 0
ẍ+ ω̃2x = 0

with

ω̃ =
√
g

L
− 2ωωp sinα− ω2

p

=
√
g

L
+ 2

( ωP

sinα

)
ωp sinα− ω2

p

=
√
g

L
+ ω2

p

≈
√
g

L
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Finally, we compare magnitudes. We assumed that ωẋ� g. But

x = A sin ω̃t
ẋ = Aω̃ cos ω̃t

where ẋ ∼ Aω̃ = Lθmaxω̃ � Lω̃. Therefore,

ωẋ � Lω̃ω

= L

√
g

L
ω

Since we know the rotation rate of Earth is much less than the pendulum frequency, ω � ω̃ this gives

ωẋ � g

and our assumption is justified.

Method 2: Coriolis theorem

We may simplify this calculation by making a second use of the Coriolis theorem, changing to a rotating
frame in the xy-plane

First, write our equations of motion,

mẍ = −mg
L
x+ 2mω sinαẏ

mÿ = −mg
L
y − 2mω sinαẋ

as a vector equation. Let x = xi + yj so that

mẍ = −mg
L

x− 2m (ω sinαk)× ẋ

This shows that we have a 2-dimensional system with an effective external force

Feff = −mg
L

x− 2m (ω sinαk)× ẋ

Now rewrite this equation in a frame of reference rotating with constant angular velocity ωp = ωpk.
Then the (full) Coriolis theorem gives the equation of motion as

mẍ′ = Feff − 2mωp × ẋ′ −mωp × (ωp × x′)

= −mg
L

x− 2m (ω sinαk)× ẋ′ − 2mωp × ẋ′ −mω2
px
′

so if we set
ωp = −ω sinαk

the cross product terms cancel and we have

ẍ′ = − g
L

x′ − ω2
px
′

ẍ +
( g
L

+ ω2
p

)
x = 0

which is the equation of a simple oscillator with frequency

ω =
√
g

L
+ ω2

p

in agreement with the previous result.
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Method 3: Complex variables We may also define

z = x+ iy

so adding i times the second equation to the first, the pair of equations becomes the single complex equation

z̈ + 2iωP ż +
g

L
z = 0

ωP = ω sinα

Let w be a variable rotating with angular velocity ωP relative to z, i.e., z = we−iωP t. Then(
ẅ − 2iωpẇ − ω2

Pw
)

+ 2iωP (ẇ − iωPw) +
g

L
w = 0

ẅ +
( g
L

+ ω2
P

)
w = 0

so that w moves with the simple oscillation

w = A sinωt+B cosωt

ω =
√
g

L
+ ω2

P

Each of the three methods shows that in a reference frame rotating with angular velocity ωP = −ω sinα,
there is simple harmonic motion of the pendulum with frequency

√
g
L + ω2

P .
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