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1 From differentials to differential forms
In a formal sense, we may define differentials as the vector space of linear mappings from curves to the reals,
that is, given a differential df we may use it to map any curve, C ∈ C to a real number simply by integrating:

df : C → R

x =
ˆ

C

df

This suggests a generalization, since we know how to integrate over surfaces and volumes as well as curves. In
higher dimensions we also have higher order multiple integrals. We now consider the integrands of arbitrary
multiple integrals ˆ

f(x)dl,
ˆ ˆ

f(x)dS,
ˆ ˆ ˆ

f(x)dV (1)

Much of their importance lies in the coordinate invariance of the resulting integrals.
One of the important properties of integrands is that they can all be regarded as oriented. If we integrate

a line integral along a curve from A to B we get a number, while if we integrate from B to A we get minus
the same number, ˆ B

A

f(x)dl = −
ˆ A

B

f(x)dl (2)

We can also demand oriented surface integrals, so the surface integral
ˆ ˆ

A · n dS (3)

changes sign if we reverse the direction of the normal to the surface. This normal can be thought of as the
cross product of two basis vectors within the surface. If these basis vectors’ cross product is taken in one
order, n has one sign. If the opposite order is taken then −n results. Similarly, volume integrals change sign
if we change from a right- or left-handed coordinate system.

The generalization from differentials to differential forms, and the associated vector calculus makes use
of three operations: the wedge product, the exterior derivative, and the Hodge dual. We discuss this in turn.

1.1 The wedge product
We can build this alternating sign into our convention for writing differential forms by introducing a formal
antisymmetric product, called the wedge product, symbolized by ∧, which is defined to give these differential
elements the proper signs. Thus, surface integrals will be written as integrals over the products

dx ∧ dy,dy ∧ dz,dz ∧ dx
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with the convention that ∧ is antisymmetric:

dx ∧ dy = −dy ∧ dx

under the interchange of any two basis forms. This automatically gives the right orientation of the surface.
Similarly, the volume element becomes

V = dx ∧ dy ∧ dz

which changes sign if any pair of the basis elements are switched.
We can go further than this by formalizing the full integrand. For a line integral, the general form of the

integrand is a linear combination of the basis differentials,

Axdx+Aydy +Azdz

Notice that we simply add the different parts. Similarly, a general surface integrand is

Azdx ∧ dy +Aydz ∧ dx+Axdy ∧ dz

while the volume integrand is

f (x) dx ∧ dy ∧ dz

These objects are called differential forms.
Clearly, differential forms come in several types. Functions are called 0 -forms, line elements 1-forms,

surface elements 2-forms, and volume forms are called 3-forms. These are all the types that exist in 3
-dimensions, but in more than three dimensions we can have p-forms with p ranging from zero to the
dimension, d, of the space. Since we can take arbitrary linear combinations of p-forms, they form a vector
space, Λp.

We can always wedge together any two forms. We assume this wedge product is associative, and obeys
the usual distributive laws. The wedge product of a p-form with a q-form is a (p+ q)-form.

Notice that the antisymmetry is all we need to rearrange any combination of forms. In general, wedge
products of even order forms with any other forms commute while wedge products of pairs of odd-order forms
anticommute. In particular, functions (0-forms) commute with all p-forms. Using this, we may interchange
the order of a line element and a surface area, for if

l = Adx

S = Bdy ∧ dz

then

l ∧ S = (A dx) ∧ (B dy ∧ dz)
= A dx ∧B dy ∧ dz

= AB dx ∧ dy ∧ dz

= −AB dy ∧ dx ∧ dz

= AB dy ∧ dz ∧ dx

= S ∧ l

but the wedge product of two line elements changes sign, for it

l1 = Adx

l2 = Bdy + Cdz
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then

l1 ∧ l2 = (A dx) ∧ (Bdy + Cdz)
= A dx ∧Bdy +A dx ∧ Cdz

= AB dx ∧ dy +AC dx ∧ dz

= −AB dy ∧ dx−AC dz ∧ dx

= −Bdy ∧Adx− Cdz ∧Adx

= −l2 ∧ l1 (4)

For any odd-order form, ω, we immediately have

ω ∧ ω = −ω ∧ ω = 0

In 3-dimensions there are no 4-forms because anything we try to construct must contain a repeated basis
form. For example

l ∧V = (A dx) ∧ (B dx ∧ dy ∧ dz)
= AB dx ∧ dx ∧ dy ∧ dz

= 0

since dx ∧ dx = 0. The same occurs for anything we try. Of course, if we have more dimensions then there
are more independent directions and we can find nonzero 4-forms. In general, in d-dimensions we can find
d-forms, but no (d+ 1)-forms.

Now suppose we want to change coordinates. How does an integrand change? Suppose Cartesian coordi-
nates (x, y) in the plane are given as some functions of new coordinates (u, v). Then we already know that
differentials change according to

dx = dx (u, v) =
∂x

∂u
du+

∂x

∂v
dv

and similarly for dy, applying the usual rules for partial differentiation. Notice what happens when we use
the wedge product to calculate the new area element:

dx ∧ dy =
(
∂x

∂u
du+

∂x

∂v
dv
)
∧
(
∂y

∂u
du+

∂y

∂v
dv
)

=
∂x

∂v

∂y

∂u
dv ∧ du+

∂x

∂u

∂y

∂v
du ∧ dv

=
(
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

)
du ∧ dv

= J du ∧ dv

where

J = det
(

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
is the Jacobian of the coordinate transformation. This is exactly the way that an area element changes
when we change coordinates! Notice the Jacobian coming out automatically. We couldn’t ask for more –
the wedge product not only gives us the right signs for oriented areas and volumes, but gives us the right
transformation to new coordinates. Of course the volume change works, too.

In eq.(4), showing the anticommutation of two 1-forms, identify the property of form multiplication used
in each step (associativity, anticommutation of basis forms, commutation of 0-forms, etc.).
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Show that under a coordinate transformation

x → x (u, v, w)
y → y (u, v, w)
z → z (u, v, w)

the new volume element is just get the full Jacobian times the new volume form,

dx ∧ dy ∧ dz = J (xyz;uvw) du ∧ dv ∧ dw

So the wedge product successfully keeps track of p-dim volumes and their orientations in a coordinate
invariant way. Now any time we have an integral, we can regard the integrand as being a differential
form. But all of this can go much further. Recall our proof that 1-forms form a vector space. Thus, the
differential, dx, of x (u, v) given above is just a gradient. It vanishes along surfaces where x is constant, and
the components of the vector (

∂x

∂u
,
∂x

∂v

)
point in a direction normal to those surfaces. So symbols like dx or du contain directional information.
Writing them with a boldface d indicates this vector character. Thus, we write

A = Aidxi

Let
f (x, y) = axy

Show that the vector with components (
∂f

∂x
,
∂f

∂y

)
is perpendicular to the surfaces of constant f.

Let’s sum up. We have defined forms, have written down their formal properties, and have use those
properties to write them in components. Then, we defined the wedge product, which enables us to write p-
dimensional integrands as p-forms in such a way that the orientation and coordinate transformation properties
of the integrals emerges automatically.

Though it is 1-forms, Aidxi that correspond to vectors, we have defined a product of basis forms that
we can generalize to more complicated objects. Many of these objects are already familiar. Consider the
product of two 1-forms.

A ∧B = Aidxi ∧Bjdxj

= AiBjdxi ∧ dxj

=
1
2
AiBj

(
dxi ∧ dxj − dxj ∧ dxi

)
=

1
2
(
AiBjdxi ∧ dxj −AiBjdxj ∧ dxi

)
=

1
2
(
AiBjdxi ∧ dxj −AjBidxi ∧ dxj

)
=

1
2

(AiBj −AjBi) dxi ∧ dxj

The coefficients
AiBj −AjBi

are essentially the components of the cross product. We will see this in more detail below when we discuss
the curl.
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1.2 The exterior derivative
We may regard the differential of any function, say f (x, y, z), as the 1-form:

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

=
∂f

∂xi
dxi

Since a function is a 0-form then we can imagine an operator d that differentiates any 0-form to give a
1-form. In Cartesian coordinates, the coefficients of this 1-form are just the Cartesian components of the
gradient.

The operator d is called the exterior derivative, and we may apply it to any p-form to get a (p+ 1)-form.
The extension is defined as follows. First consider a 1-form

A = Aidxi

We define
dA = dAi ∧ dxi

Similarly, since an arbitrary p-form in n-dimensions may be written as

ω = Ai1i2···ipdx
i1 ∧ dxi2 · · · ∧ dxip

we define the exterior derivative of ω to be the (p+ 1)-form

dω = dAi1i2···ip ∧ dxi1 ∧ dxi2 · · · ∧ dxip

Let’s see what happens if we apply d twice to the Cartesian coordinate, x, regarded as a function of x, y
and z:

d2x = d (dx)
= d (1dx)
= d (1) ∧ dx

= 0

since all derivatives of the constant function f = 1 are zero. The same applies if we apply d twice to any
function:

d2f = d (df)

= d
(
∂f

∂xi
dxi
)

= d
(
∂f

∂xi

)
∧ dxi

=
(

∂2f

∂xj∂xi
dxj

)
∧ dxi

=
∂2f

∂xj∂xi
dxj ∧ dxi

By the same argument we used to get the components of the curl, we may write this as
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d2f =
1
2

(
∂2f

∂xj∂xi
− ∂2f

∂xi∂xj

)
dxj ∧ dxi

= 0

since partial derivatives commute.
Prove the Poincaré Lemma: d2ω = 0 where ω is an arbitrary p-form.
Next, consider the effect of d on an arbitrary 1-form. We have

dA = d
(
Aidxi

)
=

(
∂Ai
∂xj

dxj
)
∧ dxi

=
1
2

(
∂Ai
∂xj
− ∂Aj
∂xi

)
dxj ∧ dxi (5)

We have the components of the curl of the vector A. We must be careful here, however, because these are
the components of the curl only in Cartesian coordinates. Later we will see how these components relate to
those in a general coordinate system. Also, recall from Section (4.2.2) that the components Ai are distinct
from the usual vector components Ai. These differences will be resolved when we give a detailed discussion
of the metric in Section (5.6). Ultimately, the action of d on a 1-form gives us a coordinate invariant way to
calculate the curl.

Finally, suppose we have a 2-form expressed as

S = Azdx ∧ dy +Aydz ∧ dx+Axdy ∧ dz

Then applying the exterior derivative gives

dS = dAz ∧ dx ∧ dy + dAy ∧ dz ∧ dx+ dAx ∧ dy ∧ dz

=
∂Az
∂z

dz ∧ dx ∧ dy +
∂Ay
∂y

dy ∧ dz ∧ dx+
∂Ax
∂x

dx ∧ dy ∧ dz

=
(
∂Az
∂z

+
∂Ay
∂y

+
∂Ax
∂x

)
dx ∧ dy ∧ dz (6)

so that the exterior derivative can also reproduce the divergence.
Fill in the missing steps in the derivation of eq.(6).
Compute the exterior derivative of the arbitrary 3-form, A = f (x, y, z) dx ∧ dy ∧ dz.

1.3 The Hodge dual
To truly have the curl in eq.(6) or the curl in eq.(5), we need a way to turn a 2-form into a vector, i.e.,
a 1-form and a way to turn a 3-form into a 0-form. This leads us to introduce the Hodge dual, or star,
operator, ∗.

Notice that in 3-dim, both 1-forms and 2-forms have three independent components, while both 0- and
3-forms have one component. This suggests that we can define an invertible mapping between these pairs.
In Cartesian coordinates, suppose we set

∗ (dx ∧ dy) = dz
∗ (dy ∧ dz) = dx
∗ (dz ∧ dx) = dy

∗ (dx ∧ dy ∧ dz) = 1
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and further require the star to be its own inverse,

∗∗ = 1

With these rules we can find the Hodge dual of any form in 3-dim.
Show that the dual of a general 1-form,

A = Aidxi

is the 2-form
S = Azdx ∧ dy +Aydz ∧ dx+Axdy ∧ dz

Show that for an arbitrary (Cartesian) 1-form

A = Aidxi

that
∗d∗A = divA

Write the curl of A

curl (A) =
(
∂Ay
∂z
− ∂Az

∂y

)
dx+

(
∂Az
∂x
− ∂Ax

∂z

)
dy +

(
∂Ax
∂y
− ∂Ay

∂x

)
dz

in terms of the exterior derivative and the Hodge dual.
Write the Cartesian dot product of two 1-forms in terms of wedge products and duals.
We have now shown how three operations – the wedge product ∧, the exterior derivative d, and the

Hodge dual ∗ – together encompass the usual dot and cross products as well as the divergence, curl and
gradient. In fact, they do much more – they extend all of these operations to arbitrary coordinates and
arbitrary numbers of dimensions. To explore these generalizations, we must first explore properties of the
metric and look at coordinate transformations. This will allow us to define the Hodge dual in arbitrary
coordinates.

2 Transformations and the volume form

2.1 Transformations
Since the use of orthonormal frames is simply a convenient choice of basis, no information is lost in restricting
our attention to them. We can always return to general frames if we wish. But as long as we maintain the
restriction, we can work with a reduced form of the symmetry group. Arbitrary coordinate transformations
– diffeomorphisms – preserve the class of frames, but only orthogonal transformations preserve orthonormal
frames. Nonetheless, the class of tensors is remains unchanged – there is a 1-1, onto correspondence between
tensors with diffeomorphism covariance and those with orthogonal covariance.

The correspondence between general frame and orthonormal frame tensors is provided by the orthonormal
frame itself. Given an orthonormal frame

ea = e a
m dxm

we can use the coefficient matrix e a
m and its inverse to transform back and forth between orthonormal and

coordinate indices. Thus, given any vector in an arbitrary coordinate basis,

v = vm
∂

∂xm

we may insert the identity in the form
δmn = e a

n e m
a
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to write

v = vnδmn
∂

∂xm

= vne a
n e m

a

∂

∂xm

= (vne a
n ) ea

= vaea

The mapping
va = vne a

n

is invertible because e a
n is invertible. Similarly, any tensor, for example

Tm1...mr
n1...ns

may be written in an orthonormal basis by using one factor of e a
m or e n

a for each linear slot:

T a1...ar

b1...bs
= Tm1...mr

n1...ns
e a1
m1

. . . e ar
mn

e n1
b1

. . . e ns

bs

Similar expressions may be written for tensors with their contravariant and covariant indices in other orders.
We showed in Section (3) that the components of the metric are related to the Cartesian components by

gjk =
∂xm

∂yj
∂xn

∂yk
ηmn

where we have corrected the index positions and inserted the Cartesian form of the metric explicitly as
ηmn = diag(1, 1, 1). Derive the form of the metric in cylindrical coordinates directly from the coordinate
transformation,

x = x (ρ, ϕ, z) = ρ cosϕ
y = y (ρ, ϕ, z) = ρ sinϕ
z = z (ρ, ϕ, z) = z

Notice that the identity matrix should exist in any coordinate system, since multiplying any vector by
the identity should be independent of coordinate system. Show that the matrix δi j , defined to be the unit
matrix in one coordinate system, has the same form in every other coordinate system. Notice that the upper
index will transform like a contravariant vector and the lower index like a covariant vector. Also note that
δi j = δ i

j .
Show that the inverse to the metric transforms as a contravariant second rank tensor. The easiest way

to do this is to use the equation
gijg

jk = δki

and the result of exercise 2, together with the transformation law for gij .

2.2 The volume form
So far, we have only defined the Levi-Civita tensor in Cartesian coordinates, where it is given by the totally
antisymmetric symbol

εi1i2...in

in n dimensions. This symbol, however, is not quite a tensor because under a diffeomorphism it becomes

εi1i2...in
∂xi1

∂yj1
∂xi2

∂yj2
. . .

∂xin

∂yjn
= Jεj1j2...jn
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where
J = det

(
∂xm

∂yn

)
is the Jacobian of the coordinate transformation. The transformation is linear and homogeneous, but J is
a density not a scalar. We can correct for this to form a tensor by dividing by another density. The most
convenient choice is the determinant of the metric. Since the metric transforms as

g′mn =
∂xi

∂ym
∂xj

∂yn
gij

the determinants are related by

g′ = det g′mn

= det
(
∂xi

∂ym
gij

∂xj

∂yn

)
= det

∂xi

∂ym
deg tij det

∂xj

∂yn

= J2g

Therefore, in the combination
ei...j =

√
gεi...j

the factors of J cancel, leaving
e′i...j =

√
g′εi...j

so that ei...j is a tensor. If we raise all indices on ei1i2...in , using n copies of the inverse metric, we have

ej1j2...jn =
√
ggj1i1gj2i2 . . . gjninεi1i2...in

=
√
gg−1εj1j2...jn

=
1
√
g
εj1j2...jn

This is also a tensor.

3 Calculus using differential forms
Define a p-form as a linear map from oriented p-dimensional volumes to the reals:

Λp : Vp → R

Linearity refers to both the forms and the volumes. Thus, for any two p -forms, Λ1
p and Λ2

p, and any constants
a and b,

aΛ1
p + bΛ2

p

is also a p-form, while for any two disjoint p-volumes, V 1
p and V 2

p ,

Λp
(
V 1
p + V 2

p

)
= Λp

(
V 1
p

)
+ Λp

(
V 2
p

)
In Section 3, we showed for 1-forms that these conditions specify the differential of functions. For p-forms,
they are equivalent to linear combinations of wedge products of p 1-forms.

Let A be a p-form in d-dimensions. Then, inserting a convenient normalization,

A =
1
p!
Ai1...ipdx

i1 ∧ . . . ∧ dxip
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The action of the exterior derivative, d, on such a p-form is

dA =
1
p!

(
∂

∂xk
Ai1...ip

)
dxk ∧ dxi1 ∧ . . . ∧ dxip

We also defined the wedge product as a distributive, associative, antisymmetric product on 1-forms:

(
adxi + bdxi

)
∧ dxj = adxi ∧ dxj + bdxi ∧ dxj

dxi ∧
(
dxj ∧ dxk

)
=

(
dxi ∧ dxj

)
∧ dxk

dxi ∧ dxj = −dxj ∧ dxi

A third operation, the Hodge dual, was provisionally defined in Cartesian coordinates, but now we can write
its full definition. The dual of A is defined to be the (d− p)-form

∗A =
1

(d− p)!p!
Ai1...ipe

i1...ip
ip+1...id

dxip+1 ∧ . . . ∧ dxid

Notice that we have written the first p indices of the Levi-Civita tensor in the superscript position to keep
with our convention of always summing an up index with a down index. In Cartesian coordinates, these
two forms represent the same array of numbers, but it makes a difference when we look at other coordinate
systems.

Differential calculus is defined in terms of these three operations, (∧,∗ ,d) . Together, they allow us to
perform all standard calculus operations in any number of dimensions and in a way independent of any
coordinate choice.

3.1 Grad, Div, Curl and Laplacian
It is straightforward to write down the familiar operations of gradient and curl and divergence. We specify
each, and apply each in polar coordinates, (ρ, θ, z) . Recall that the metric in polar coordinates is

gmn =

 1
ρ2

1


its inverse is

gmn =

 1
1
ρ2

1


and its determinant is

g = det gmn = ρ2

Gradient The gradient of a function is given by the exterior derivative of a 0 -form,

df =
∂f

∂xi
dxi

Notice that the coefficients are components of a type-
(
0
1

)
tensor, so that if we want the gradient to be a

vector, we require the metric:

[∇f ]i = gij
∂f

∂xj
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For example, the gradient in polar coordinates has components

[∇f ]i =

 1
1
ρ2

1




∂f
∂ρ
∂f
∂ϕ
∂f
∂z

 =


∂f
∂ρ

1
ρ
∂f
∂ϕ
∂f
∂z


so

∇f =
∂f

∂ρ
ρ̂+

1
ρ

∂f

∂ϕ
ϕ̂+

∂f

∂z
k̂

Divergence The use of differential forms leads to an extremely useful expression for the divergence –
important enough that it goes by the name of the divergence theorem. Starting with a 1-form, ω = ωidxi,
we compute

∗d∗ω = ∗d∗ωidxi

= ∗d
(

1
2
ωie

i
jk

)
dxj ∧ dxk

=
1
2

∗
d
(
ωi
√
ggin

)
εnjkdxj ∧ dxk

=
1
2

∗ ∂

∂xm
(
ωi
√
ggin

)
εnjkdxm ∧ dxj ∧ dxk

=
1
2

∂

∂xm
(
ωi
√
ggin

)
εnjke

mjk

=
1
2

1
√
g

∂

∂xm
(
ωi
√
ggin

)
εnjkε

mjk

=
1
2

1
√
g

∂

∂xm
(
ωi
√
ggin

)
2δmn

=
1
√
g

∂

∂xm
(
ωi
√
ggim

)
In terms of the vector, rather than form, components of the original form, we may replace ωi = gijωj so that

∗d∗ω =
1
√
g

∂

∂xm
(
√
gωm) = ∇ · ω

Since the operations on the left are all coordinate invariant, the in the middle is also. Notice that in Cartesian
coordinates the metric is just δij , with determinant 3, so the expression reduces to the familiar form of the
divergence and

∇ · ω =
1
√
g

∂

∂xm
(
√
gωm)

In polar coordinates we have

∇ · ω =
1√
ρ2

∂

∂xm

(√
ρ2ωm

)
=

1√
ρ2

(
∂

∂ρ

(√
ρ2ωρ

)
+

∂

∂ϕ

(√
ρ2ωϕ

)
+

∂

∂z

(√
ρ2ωz

))
=

1
ρ

∂

∂ρ
(ρωρ) +

∂ωϕ

∂ϕ
+
∂ωz

∂z
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Curl The curl is the dual of the exterior derivative of a 1-form. Thus, if ω = ωidxi then

∗dω = ∗ ∂

∂xj
ωidxjdxi

=
(
eji k

∂

∂xj
ωi

)
dxk

= eji kgimg
mn ∂

∂xj
ωndxk

= eji kgim

(
∂

∂xj
(gmnωn)− ωn

∂

∂xj
gmn

)
dxk

= elmkg
lj

(
∂

∂xj
ωm − ωsgsn

∂

∂xj
gmn

)
dxk

Now observe that

gsn
∂

∂xj
gmn =

∂

∂xj
(gsngmn)− gmn ∂

∂xj
(gsn)

=
∂

∂xj
δms − gmn

∂

∂xj
(gsn)

= −gmn ∂

∂xj
gsn

so that

∗dω = elmkg
lj

(
∂

∂xj
ωm + ωsgmn

∂

∂xj
gsn

)
dxk

=
(
elmkg

lj ∂

∂xj
ωm + ωsejn k

∂

∂xj
gsn

)
dxk

Next consider

ejn k
∂

∂xj
gsn = ejn k∂jgsn

=
1
2
ejn k (∂jgsn − ∂ngsj)

=
1
2
ejn k (∂jgsn − ∂ngsj + ∂sgjn)

= ejn kΓnsj

This combines to

∗dω =
(
elmkg

lj ∂

∂xj
ωm + ωsejn k

∂

∂xj
gsn

)
dxk

=
(
elmkg

lj ∂

∂xj
ωm + ωsejn kΓnsj

)
dxk

= ejmk

(
∂

∂xj
ωm + gnmωsΓnsj

)
dxk

= ejmk
(
∂jω

m + ωsΓm sj

)
dxk

= ejmkDjω
mdxk

=
(
ejmkD

jωm
)
dxk
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Therefore, if we raise the free index, the curl is

[∇× ω]i = gik
(
ejmkD

jωm
)

=
1
√
g
εijkDjωk

Also consider

d∗ω = d
(
ei jkωidx

jdxk
)

= d
(
eijkω

idxjdxk
)

= d
(√
gεijkω

idxjdxk
)

=
∂

∂xm
(√
gωiεijkdxmdxjdxk

)
=

(
eji k

∂

∂xj
ωi

)
dxk

The simplest form computationally uses this to write

∗dω = [∇× ω]i gikdxk

To apply the formula, start with the components of the vector. In our familiar example in polar coordinates,
let

wi = (wρ, wϕ, wz)

The corresponding form has components ωi = gijw
j =

(
wρ, ρ2wϕ, wz

)
. Therefore, the exterior derivative is

dω = d
(
wρdρ+ ρ2wϕdϕ+ wzdz

)
=

∂wρ

∂ϕ
dϕ ∧ dρ+

∂wρ

∂z
dz ∧ dρ

+
∂

∂ρ

(
ρ2wϕ

)
dρ ∧ dϕ+

∂

∂z

(
ρ2wϕ

)
dz ∧ dϕ

+
∂wz

∂ρ
dρ ∧ dz +

∂wz

∂ϕ
dϕ ∧ dz

=
(
∂

∂ρ

(
ρ2wϕ

)
− ∂wρ

∂ϕ

)
dρ ∧ dϕ+

(
∂wz

∂ϕ
− ∂

∂z

(
ρ2wϕ

))
dϕ ∧ dz

+
(
∂wρ

∂z
− ∂wz

∂ρ

)
dz ∧ dρ

Now the dual maps the basis as

∗dρ ∧ dϕ = e123g33dz =
1
ρ
dz

∗dϕ ∧ dz = e231g11dρ =
1
ρ
dρ

∗dz ∧ dρ = e312g22dϕ = ρdϕ

so that

∗dω =
1
ρ

(
∂

∂ρ

(
ρ2wϕ

)
− ∂wρ

∂ϕ

)
dz +

(
1
ρ

∂wz

∂ϕ
− ρ ∂

∂z
(wϕ)

)
dρ

+ρ
(
∂wρ

∂z
− ∂wz

∂ρ

)
dϕ
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Now, since
∗dω = [∇× ω]i gikdxk

we use the inverse metric on the components of ∗dω to find

ωi = gijωj

so we have

[∇× ω]1 =
1
ρ

∂wz

∂ϕ
− ρ ∂

∂z
(wϕ)

[∇× ω]2 =
1
ρ

(
∂ωρ

∂z
− ∂ωz

∂ρ

)
[∇× ω]3 =

1
ρ

(
∂

∂ρ

(
ρ2wϕ

)
− ∂wρ

∂ϕ

)
Work out the form of the gradient, curl, divergence and laplacian in spherical coordinates. Express your

results using a basis of unit vectors.

4 The Poincaré lemma and Stokes’ theorem
We have already seen the Poincaré lemma,

d2ω ≡ 0

for any p-form ω. The extremely important Stokes’ theorem is the converse, which states that for any p-form
ω, if

dω = 0

throughout a concave region, then there exists a (p− 1)-form η such that

ω = dη

This provides a converse because if ω = dη then the Poincaré lemma immediately implies dω = 0.
Consider how this relates to the familiar 3-dim form of Stokes’ theorem. If we restrict to 3-dim and

integrate dη along any curve the result depends only on the value of η at the endpoints,
ˆ

C

dη = η (x2)− η (x1)

Therefore, around any closed curve the integral vanishes.
˛

C

dη = 0

Now consider the integral along a curve C for an arbitrary 1-form ω,

η =
ˆ

C

ω

This integral gives rise to a (single valued) function if and only if it vanishes on all closed paths,
˛

C

ω = 0
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Stokes’ theorem allows us to write this as a surface integral of dω,

0 =
˛

C

ω

=
¨

S

dω

and the arbitrariness of the surface S allows us to conclude

dω = 0

Show that if ω is a 2-form in 3-dim, then the generalized Stokes’ theorem is the divergence theorem.

5 Exercises: Maxwell’s equations
In an orthonormal vector basis the electric and magnetic fields and the current are

E = Eiei
B = Biei
J = J iei

Define equivalent forms in arbitrary coordinates by

ε = Eigijdxj = Ejdxj

β =
1
2
Bieijkdxj ∧ dxk

κ = J igijdxj

Show that Maxwell’s equations,

∇ ·E =
4π
c
ρ

∇ ·B = 0

∇×E +
1
c

∂B
∂t

= 0

∇×B− 1
c

∂E
∂t

=
4π
c

J

may be written in terms of ε, β, κ and ρ as

∗d∗ε =
4π
c
ρ

dβ = 0

dε+
1
c

∂β

∂t
= 0

∗d∗β − 1
c

∂ε

∂t
=

4π
c
κ

The third equation may be proved as follows:

dε+
1
c

∂β

∂t
= d

(
Eigij

)
dxj +

1
c

∂

∂t

1
2
Bieijkdxj ∧ dxk
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=
∂Ej
∂xm

dxm ∧ dxj +
1
c

∂

∂t

1
2
Bieijkdxj ∧ dxk

=
1
2

(
∂

∂xm
Ej −

∂

∂xj
Em

)
dxm ∧ dxj +

1
c

∂

∂t

1
2
Bieijkdxj ∧ dxk

=
1
4

(
∂

∂xn
El −

∂

∂xl
En

)
einleijkdxj ∧ dxk +

1
c

∂

∂t

1
2
Bieijkdxj ∧ dxk

=
1
2

(
1
2

(
∂

∂xn
El −

∂

∂xl
En

)
einl +

1
c

∂

∂t
Bi
)
eijkdxj ∧ dxk

=
1
2

(
einl∂nEl +

1
c

∂

∂t
Bi
)
eijkdxj ∧ dxk

=
1
2

(
∇×E +

1
c

∂

∂t
B
)i
eijkdxj ∧ dxk

= 0

From Maxwell’s equations,

∗d∗ε =
4π
c
ρ

dβ = 0

dε+
1
c

∂β

∂t
= 0

∗d∗β − 1
c

∂ ε

∂t
=

4π
c
κ

show that
1
c

∂

∂t
ρ+∗ d∗ κ = 0

Show that this equation is the continuity equation by writing it in the usual vector notation.
Using the homogeneous Maxwell equations

dβ = 0

dε+
1
c

∂β

∂t
= 0

show that the electric and magnetic fields arise from a potential.
Start with the magnetic equation

dβ = 0

Then the converse to the Poincaré lemma shows immediately that

β = dA

for some 1-form A. Substitute this result into the remaining homogeneous equation,

dε+
1
c

∂

∂t
dA = 0

d
(
ε+

1
c

∂

∂t
A
)

= 0

A second use of the converse to the Poincaré lemma shows that there exist a 0-form −ϕ such that

ε+
1
c

∂

∂t
A = −dϕ

and therefore
ε = −dϕ− 1

c

∂

∂t
A
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