Central Forces I: Simplifying
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1 Center of mass coordinates

We consider the general 2-body problem, where the force between two point particles of masses M and m
is derivable from a central potential, V (1), where r is the distance between the two masses. We begin with
the Cartesian form of the action,
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which is dependent upon six coordinates. We make a simplification by introducing new coordinates, the

position R = Mj\)j_t;’;x of the center of mass, and the separation vector, r = x — X from M to m. In terms
of these we may solve for X and x:
M+m)R = MX+mx
= MX+m(r+X)
M+m)R—mr = (M+m)X
mr
X = R-
M+m
and then
x = r+X
mr
— R —
T M+m
M
= R
+M+mr
In terms of these, the velocities become
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so the kinetic energy is
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We define the reduced mass and the total mass
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and the action becomes
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The action has separated into two decoupled terms, Sp and S,.. We may write the velocities in either
Cartesian,
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or spherical,

R? R? + R?*©% 4 R?sin” 092
P2 = 72+ r20% + r?sin? 6p?
2 Conserved quantities

We consider consequences of Noether’s theorem S.
First, we notice that all components of the center of mass are cyclic, % =0, so that
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is conserved. Integrating, the motion of the center of mass proceeds at constant velocity,
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This eliminates three of the six degrees of freedom.
Now we are left with
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and we consider a rotational variation,
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where €;; = —¢;;. We find
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Working out the variations, we have
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since €;;7'r7 = 0. For the kinetic term, we similarly have
r- 0.0 =7y =0

and the action is rotationally invariant.
Now we use Noether’s theorem to conclude that
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is conserved. Since athe arbitrary antisymmetric matrix, €;; may be written as
k
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where a” is an arbitrary constant vector, we have three conserved quantities,
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Since a” is arbitrary and constant, we may identify the angular momentum, L, as the cross product

L=rxur

Finally, L contains no explicit time dependence, so we have conserved energy.

3 The equation of motion

We use two of the conserved angular momenta immediately. The constancy of L means that the position r
and reduced momentum pi always lie in the same plane. To see this, choose initial coordinates so that both
lie in the xy-plane. Then since L = Lk from the initial conditions, we have

0 = kxL
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Since r and ¥ must lie in distinct directions (unless L = 0, in which case they are always along a single line),

we must have both k- ui = 0 and k- r = 0 at all times.
Given the planar character of the motion, we choose the § = 7 plane for the initial directions, and this

angle cannot change so = 0,sin = 0. Writing the action in these spherical coordinates then gives
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We are left with only two coordinates, with ¢ cyclic. The conserved angluar momentum (the remaining
degree of freedom of L) is
L= pur?¢

and the sole equation of motion from varying r is
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Substituting ¢ = ﬁ we have a single, ordinary differential equation,
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