# Central Forces I: Simplifying 

October 28, 2014

## 1 Center of mass coordinates

We consider the general 2-body problem, where the force between two point particles of masses $M$ and $m$ is derivable from a central potential, $V(r)$, where $r$ is the distance between the two masses. We begin with the Cartesian form of the action,

$$
S=\int_{t_{1}=0}^{t_{2}=t} \frac{1}{2} M \dot{\mathbf{X}}^{2}+\frac{1}{2} m \dot{\mathbf{x}}^{2}-V\left(\sqrt{(\mathbf{X}-\mathbf{x})^{2}}\right)
$$

which is dependent upon six coordinates. We make a simplification by introducing new coordinates, the position $\mathbf{R} \equiv \frac{M \mathbf{X}+m \mathbf{x}}{M+m}$ of the center of mass, and the separation vector, $\mathbf{r} \equiv \mathbf{x}-\mathbf{X}$ from $M$ to $m$. In terms of these we may solve for $\mathbf{X}$ and $\mathbf{x}$ :

$$
\begin{aligned}
(M+m) \mathbf{R} & =M \mathbf{X}+m \mathbf{x} \\
& =M \mathbf{X}+m(\mathbf{r}+\mathbf{X}) \\
(M+m) \mathbf{R}-m \mathbf{r} & =(M+m) \mathbf{X} \\
\mathbf{X} & =\mathbf{R}-\frac{m \mathbf{r}}{M+m}
\end{aligned}
$$

and then

$$
\begin{aligned}
\mathbf{x} & =\mathbf{r}+\mathbf{X} \\
& =\mathbf{r}+\mathbf{R}-\frac{m \mathbf{r}}{M+m} \\
& =\mathbf{R}+\frac{M}{M+m} \mathbf{r}
\end{aligned}
$$

In terms of these, the velocities become

$$
\begin{aligned}
\dot{\mathbf{X}} & =\dot{\mathbf{R}}-\frac{m \dot{\mathbf{r}}}{M+m} \\
\dot{\mathbf{x}} & =\dot{\mathbf{R}}+\frac{M \dot{\mathbf{r}}}{M+m}
\end{aligned}
$$

so the kinetic energy is

$$
\begin{aligned}
T & =\frac{1}{2} M \dot{\mathbf{X}}^{2}+\frac{1}{2} m \dot{\mathbf{x}}^{2} \\
& =\frac{1}{2} M\left(\dot{\mathbf{R}}^{2}-\frac{2 m \dot{\mathbf{R}} \cdot \dot{\mathbf{r}}}{M+m}+\frac{m^{2} \dot{\mathbf{r}}^{2}}{(M+m)^{2}}\right)+\frac{1}{2} m\left(\dot{\mathbf{R}}^{2}+\frac{2 M \dot{\mathbf{R}} \cdot \dot{\mathbf{r}}}{M+m}+\frac{M^{2} \dot{\mathbf{r}}^{2}}{(M+m)^{2}}\right) \\
& =\frac{1}{2} M \dot{\mathbf{R}}^{2}-\frac{M m}{M+m} \dot{\mathbf{R}} \cdot \dot{\mathbf{r}}+\frac{1}{2} \frac{M m^{2} \dot{\mathbf{r}}^{2}}{(M+m)^{2}}+\frac{1}{2} m \dot{\mathbf{R}}^{2}+\frac{m M \dot{\mathbf{R}} \cdot \dot{\mathbf{r}}}{M+m}+\frac{1}{2} \frac{m M^{2} \dot{\mathbf{r}}^{2}}{(M+m)^{2}} \\
& =\frac{1}{2}(M+m) \dot{\mathbf{R}}^{2}+\frac{1}{2} \frac{m M}{M+m} \dot{\mathbf{r}}^{2}
\end{aligned}
$$

We define the reduced mass and the total mass

$$
\begin{aligned}
\mu & \equiv \frac{m M}{M+m} \\
M_{0} & \equiv M+m
\end{aligned}
$$

and the action becomes

$$
\begin{aligned}
S & =\int_{0}^{t}\left(\frac{1}{2} M_{0} \dot{\mathbf{R}}^{2}+\frac{1}{2} \mu \dot{\mathbf{r}}^{2}-V(r)\right) d t \\
& =\int_{0}^{t} \frac{1}{2} M_{0} \dot{\mathbf{R}}^{2} d t+\int_{0}^{t}\left(\frac{1}{2} \mu \dot{\mathbf{r}}^{2}-V(r)\right) d t
\end{aligned}
$$

The action has separated into two decoupled terms, $S_{R}$ and $S_{r}$. We may write the velocities in either Cartesian,

$$
\begin{aligned}
\dot{\mathbf{R}}^{2} & =\dot{R}_{x}^{2}+\dot{R}_{y}^{2}+\dot{R}_{z}^{2} \\
\dot{\mathbf{r}}^{2} & =\dot{r}_{x}^{2}+\dot{r}_{y}^{2}+\dot{r}_{z}^{2}
\end{aligned}
$$

or spherical,

$$
\begin{aligned}
\dot{\mathbf{R}}^{2} & =\dot{R}^{2}+R^{2} \dot{\Theta}^{2}+R^{2} \sin ^{2} \Theta \dot{\Phi}^{2} \\
\dot{\mathbf{r}}^{2} & =\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\varphi}^{2}
\end{aligned}
$$

## 2 Conserved quantities

We consider consequences of Noether's theorem $S$.
First, we notice that all components of the center of mass are cyclic, $\frac{\partial L}{\partial R^{i}}=0$, so that

$$
\mathbf{P}=M_{0} \dot{\mathbf{R}}
$$

is conserved. Integrating, the motion of the center of mass proceeds at constant velocity,

$$
\mathbf{R}=\mathbf{R}_{0}+\frac{\mathbf{P}}{M_{0}} t
$$

This eliminates three of the six degrees of freedom.
Now we are left with

$$
S_{r}=\int_{0}^{t}\left(\frac{1}{2} \mu \dot{\mathbf{r}}^{2}-V(r)\right) d t
$$

and we consider a rotational variation,

$$
\delta_{\varepsilon} r^{i}=\varepsilon_{j}^{i} r^{j}
$$

where $\varepsilon_{i j}=-\varepsilon_{j i}$. We find

$$
\delta_{\varepsilon} S_{r}=\int_{0}^{t}\left(\mu \dot{\mathbf{r}} \cdot \delta_{\varepsilon} \dot{\mathbf{r}}-\frac{\partial V}{\partial r} \delta_{\varepsilon} r\right) d t
$$

Working out the variations, we have

$$
\begin{aligned}
\delta_{\varepsilon} r & =\delta_{\varepsilon} \sqrt{r_{x}^{2}+r_{y}^{2}+r_{z}^{2}} \\
& =\frac{1}{\sqrt{r_{z}^{2}+r_{y}^{2}+r_{z}^{2}}}\left(r_{x} \delta_{\varepsilon} r_{x}+r_{y} \delta_{\varepsilon} r_{y}+r_{z} \delta_{\varepsilon} r_{z}\right) \\
& =\frac{1}{\sqrt{r_{z}^{2}+r_{y}^{2}+r_{z}^{2}}} r^{i} \varepsilon_{i j} r^{j} \\
& =0
\end{aligned}
$$

since $\varepsilon_{i j} r^{i} r^{j}=0$. For the kinetic term, we similarly have

$$
\dot{\mathbf{r}} \cdot \delta_{\varepsilon} \dot{\mathbf{r}}=\dot{r}^{i} \varepsilon_{i j} \dot{r}^{j}=0
$$

and the action is rotationally invariant.
Now we use Noether's theorem to conclude that

$$
\frac{\partial L}{\partial \dot{r}^{i}} \varepsilon_{j}^{i} r^{j}
$$

is conserved. Since athe arbitrary antisymmetric matrix, $\varepsilon_{i j}$ may be written as

$$
\varepsilon_{i j}=\varepsilon_{i j k} a^{k}
$$

where $a^{k}$ is an arbitrary constant vector, we have three conserved quantities,

$$
L_{k} a^{k} \equiv-\mu \varepsilon_{i j k} \dot{r}^{i} r^{j} a^{k}
$$

Since $a^{k}$ is arbitrary and constant, we may identify the angular momentum, $\mathbf{L}$, as the cross product

$$
\mathbf{L}=\mathbf{r} \times \mu \dot{\mathbf{r}}
$$

Finally, $L$ contains no explicit time dependence, so we have conserved energy.

## 3 The equation of motion

We use two of the conserved angular momenta immediately. The constancy of $\mathbf{L}$ means that the position $\mathbf{r}$ and reduced momentum $\mu \dot{\mathbf{r}}$ always lie in the same plane. To see this, choose initial coordinates so that both lie in the $x y$-plane. Then since $\mathbf{L}=L \mathbf{k}$ from the initial conditions, we have

$$
\begin{aligned}
0 & =\mathbf{k} \times \mathbf{L} \\
& =\mathbf{k} \times(\mathbf{r} \times \mu \dot{\mathbf{r}}) \\
& =\mathbf{r}(\mathbf{k} \cdot \mu \dot{\mathbf{r}})-\mu \dot{\mathbf{r}}(\mathbf{k} \cdot \mathbf{r})
\end{aligned}
$$

Since $\mathbf{r}$ and $\dot{\mathbf{r}}$ must lie in distinct directions (unless $\mathbf{L}=0$, in which case they are always along a single line), we must have both $\mathbf{k} \cdot \mu \dot{\mathbf{r}}=0$ and $\mathbf{k} \cdot \mathbf{r}=0$ at all times.

Given the planar character of the motion, we choose the $\theta=\frac{\pi}{2}$ plane for the initial directions, and this angle cannot change so $\dot{\theta}=0, \sin \theta=0$. Writing the action in these spherical coordinates then gives

$$
S_{r}=\int_{0}^{t}\left(\frac{1}{2} \mu \dot{\mathbf{r}}^{2}-V(r)\right) d t
$$

$$
\begin{aligned}
& =\int_{0}^{t}\left(\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\varphi}^{2}\right)-V(r)\right) d t \\
& =\int_{0}^{t}\left(\frac{1}{2} \mu\left(\dot{r}^{2}+r^{2} \dot{\varphi}^{2}\right)-V(r)\right) d t
\end{aligned}
$$

We are left with only two coordinates, with $\varphi$ cyclic. The conserved angluar momentum (the remaining degree of freedom of $\mathbf{L}$ ) is

$$
L=\mu r^{2} \dot{\varphi}
$$

and the sole equation of motion from varying $r$ is

$$
-\mu \ddot{r}+\mu r \dot{\varphi}^{2}-\frac{\partial V}{\partial r}=0
$$

Substituting $\dot{\varphi}=\frac{L}{\mu r^{2}}$ we have a single, ordinary differential equation,

$$
\mu \ddot{r}-\frac{L^{2}}{\mu r^{3}}+\frac{\partial V}{\partial r}=0
$$

