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By moving to the center of mass system, R = 0, the general two-body problem with force f (r) = −dVdr
reduces to a 2-dimensional problem in a plane with action

S =
ˆ

1
2
µ
(
ṙ2 + r2ϕ̇2

)
− V (r)

where µ = m1m2
m1+m2

is the reduced mass. The equations of motion are then

µr̈ − µrϕ̇2 − f (r) = 0
d

dt

(
µr2ϕ̇

)
= 0

We may integrate these directly, or use our the symmetries of the system to write two constants of the
motion direrctly. Since there is no explicit time dependence in the lagrangian, energy is conserved,

E =
∑
i

∂L

∂q̇i
q̇i − L

=
1
2
µ
(
ṙ2 + r2ϕ̇2

)
+ V (r)

and since ϕ is cyclic, the angular momentun is conserved,

Lϕ = µr2ϕ̇

Notice that the total angular momentum L = Lϕn̂ actually provides three constants of motion. Two of these
fix the direction of the unit vector n̂, and therefore the oriention of the plane of motion, while the third is
the magnitude, Lϕ.

We have the immediate solution for ϕ̇,

ϕ̇ =
Lϕ
µr2

and this allows us to write the energy equation entirely in terms of r and ṙ,

E =
1
2
µṙ2 +

L2
ϕ

2µr2
+ V (r)

Solving for dr
dt ,

dr

dt
=

√
2
µ

(
E −

L2
ϕ

2µr2
− V (r)

)
and integrating, we have a formal solution,

t =

rˆ

r0

dr√
2
µ

(
E − L2

ϕ

2µr2 − V (r)
)

ϕ = ϕ0 +

tˆ

0

Lϕ
µr2 (t)

dt
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where the first equation determines r (t), which is then used in the second.
We may also combine the orbital equations to get the shape of the orbit,

dr

dϕ
=

ṙ

ϕ̇
=
µr2

Lϕ

√
2
µ

(
E −

L2
ϕ

2µr2
− V (r)

)
ϕ =

ˆ
Lϕdr

µr2
√

2
µ

(
E − L2

ϕ

2µr2 − V (r)
)

Power law potentials
Consider the class of attractive potentials

V (r) =
{

Arn +powers
− A
rn −powers

for any positive or negative integer n. We can understand qualitative properties of the solutions from these
expressions. From the velocity, we see there may be one or two turning points, i.e., points where dr

dt = 0.
These are given by √

2
µ

(
E −

L2
ϕ

2µr2
− V (r)

)
= 0

2µr2E − L2
ϕ − 2µArn+2 = 0

This is a polynomial equation of order s = max (2, n+ 2). Regarded in the complex plane, such an equation
has exactly s solutions, all lying equally spaced on a circle about the origin in the complex plane. Therefore,
there can be at most 2 real solutions. For positive powers, n > 0, the expression is negative as r −→ 0,
but must eventually become positive as r −→ ∞. Therefore, there is at least one zero. When the power is
negative, n < 0, the same is true, with the expression tending to −∞ as r −→ 0. We conclude that there
are two types of motion, depending on whether there is one solution or there are two.

For repulsive potentials, the motion is away from the center of force so there will be either one turning
point or none, depending on the initial velocity.

If there are two turning points, the motion is bounded between them and we have orbits. If there is one
turning point, we have scattering.

We may also look at the motion as that of a free particle in an effective potential

Veff =
L2
ϕ

2µr2
+ V (r)

For n > 0, this potential has extrema at

0 = −
L2
ϕ

µr3
+ nArn−1

L2
ϕ

nAµ
= rn+2

so there is a single minimum, since we always have r > 0. For n < 0,

0 = −
L2
ϕ

µr3
+

nA

rn+1

rn−2 =
nµA

L2
ϕ

and we again have a single minimum. Therefore, for energy chosen at this minimum, we may always have
circular orbits. We now examine when perturbations of these circular orbits are closed.
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Newtonian gravity
Let the force be given by Newton’s law of universal gravitation,

F = −GMm
r2

r̂

Then V = −GMm
r and for general initial conditions, we have

ϕ− ϕ0 =

rˆ

r0

Lϕdr

µr2
√

2
µ

(
E − L2

ϕ

2µr2 + GMm
r

)
Choose the initial conditions so that r (0) = r0 = rmin when ϕ (0) = ϕ0 = 0. Integrating, we substitute
1
u = r,

ϕ = −
rˆ

r0

Lϕdu

µ

√
2
µ

(
E − L2

ϕ

2µ u
2 +GMmu

)
ϕ = −

rˆ

r0

du√
−
(
u2 − 2µ

L2
ϕ
GMmu− 2µE

L2
ϕ

)
Notice that the number of turning points in the orbit depends on the number of zeros of the denominator,
given by

0 = u2 − 2µ
L2
ϕ

GMmu− 2µE
L2
ϕ

u =
µ

L2
ϕ

GMm±

√
µ2

L4
ϕ

G2M2m2 +
2µE
L2
ϕ

For negative total energy, three will be two roots as long as the energy is in the range

− µ

2L2
ϕ

G2M2m2 ≤ E < 0

and u is in the range

µ

L2
ϕ

GMm−

√
µ2

L4
ϕ

G2M2m2 +
2µE
L2
ϕ

≤ u ≤ µ

L2
ϕ

GMm+

√
µ2

L4
ϕ

G2M2m2 +
2µE
L2
ϕ

In this case we have bound orbits. For positive energy, only the upper sign gives an allowed root, since u
must be positive, and we have scattering,

0 ≤ u ≤ µ

L2
ϕ

GMm+

√
µ2

L4
ϕ

G2M2m2 +
2µE
L2
ϕ

Complete the square,

u2 − 2µ
L2
ϕ

GMmu− 2µE
L2
ϕ

=
(
u− GMmµ

L2
ϕ

)2

−
(
GMmµ

L2
ϕ

)2

− 2µE
L2
ϕ
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Define

a =
GMmµ

L2
ϕ

b2 =
(
GMmµ

L2
ϕ

)2

+
2µE
L2
ϕ

> 0

where the positive definiteness of b2 is the condition for bound orbits found above. Then

ϕ = −
rˆ

r0

du√
b2 − (u− a)2

Setting ξ = u− a,

ϕ = −
rˆ

r0

du√
b2 − ξ2

Now, check the range of ξ. From the range for u for bound orbits, we have

−

√
µ2

L4
ϕ

G2M2m2 +
2µE
L2
ϕ

≤ u− µ

L2
ϕ

GMm ≤ +

√
µ2

L4
ϕ

G2M2m2 +
2µE
L2
ϕ

ξ2 = (u− a)2 ≤ µ2

L4
ϕ

G2M2m2 +
2µE
L2
ϕ

ξ2 ≤ b2

with the same result for scattering,

0 ≤ u ≤ µ

L2
ϕ

GMm+

√
µ2

L4
ϕ

G2M2m2 +
2µE
L2
ϕ

(u− a)2 ≤ µ2

L4
ϕ

G2M2m2 +
2µE
L2
ϕ

ξ2 ≤ b2

and we see that we may always use a trigonometric substitution, ξ = b sin θ. This allows us to complete the
integral,

ϕ = −
rˆ

r0

b cos θdθ√
b2 − b2 sin2 θ

= −θ − θ0

= − sin−1 ξ

b
− sin−1 ξ0

b

= − sin−1 u− a
b
− sin−1 u0 − a

b

= − sin−1
1
r − a
b
− sin−1

1
r0
− a
b

= − sin−1 1− ar
br

− sin−1 1− ar0
br0
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Let λ = sin−1 1−ar0
br0

. Then

sin (ϕ+ λ) =
ar − 1
br

1 = r (a− b sin (ϕ+ λ))

and finally

r =
1

a− b sin (ϕ+ λ)

Since our initial condition is that r = rmin when ϕ = 0, and because the expression on the right is minimal
when sin (ϕ+ λ) = −1, we set ϕ = 0 and require sinλ = −1. Therefore, λ = −π2 and we have

r =
1

a+ b cosϕ

This equation is often written in terms of the eccentricity, ε, and the semi-major axis, A,

r =
A
(
1− e2

)
1 + e cosϕ

so we have

a =
1

A (1− e2)

b =
e

A (1− e2)

Inverting and substituting the constants of motion,

e =
b

a

=

√(
GMmµ
L2

ϕ

)2

+ 2µE
L2

ϕ

GMmµ
L2

ϕ

=

√
1 + 2µE

(
Lϕ

GMmµ

)2

=

√
1 +

2EL2
ϕ

(GMm)2 µ

A =
1

a (1− e2)

=
a

a2 − b2

=
GMmµ
L2

ϕ(
GMmµ
L2

ϕ

)2

−
(
GMmµ
L2

ϕ

)2

− 2µE
L2

ϕ

= −GMm

2E
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Bound orbits

For bound orbits, the total energy, E, is negative, so

e =

√
1−

2 |E|L2
ϕ

(GMm)2 µ

A =
GMm

2 |E|

Recall our observation that for bound orbits the energy must be in the range

− µ

2L2
ϕ

G2M2m2 ≤ E < 0

We now see that this corresponds exactly to eccentricity in the range

0 ≤ e < 1

with the minimum energy giving a circular orbit. The equation for the orbit describes an ellipse, with r = 0
lying at one focus of the ellipse.

Scattering

For scattering, we have positive energy, so the eccentricity is greater than 1, and A is negative,

e =

√
1 +

2EL2
ϕ

(GMm)2 µ

A = −GMm

2E

The solution for r (ϕ) may now be written as

r =
A
(
1− e2

)
1 + e cosϕ

=
(−A)

(
e2 − 1

)
1 + e cosϕ

=
|A|
(
e2 − 1

)
1 + e cosϕ

Notice that this expression diverges for certain values of ϕ,

1 + e cosϕ = 0

cosϕ = −1
e

This restricts ϕ to the range
π

2
+ cos−1

(
1
e

)
≤ ϕ ≤ 3π

2
− cos−1

(
1
e

)
and r reaches infinity at the limits. The shape is now hyperbolic; r comes in toward the scattering center
from a large distance, swings around and flies off in a new direction, escaping to arbitrarily large distance.

It may be shown that the limiting, marginally unbound case is a parabola. We therefore have the
possibility of circles, parabolas, ellipses and hyperbolas – exactly the conic sections. The conic sections are
the intersections of a plane with a cone.
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