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Recall that we have defined a symplectic transformation to be any linear transformation MA
B leaving

the symplectic form invariant,
ΩAB ≡MA

CM
B
DΩCD

Coordinate transformations, χA
(
ξB
)
which are symplectic transformations at each point are called canonical.

Specifically, those functions χA (ξ) satisfying

ΩCD ≡ ∂χC

∂ξA
ΩAB

∂χD

∂ξB

are canonical transformations. Canonical transformations preserve Hamilton’s equations.

1 Poisson brackets
We may also write Hamilton’s equations in terms of Poisson brackets between dynamical variables. By a
dynamical variable, we mean any function f = f

(
ξA
)
of the canonical coordinates used to describe a physical

system.
We define the Poisson bracket of any two dynamical variables f and g by

{f, g} = ΩAB
∂f

∂ξA
∂g

∂ξB

The importance of this product is that it is preserved by canonical transformations. We see this as follows.
Let ξA be any set of phase space coordinates in which Hamilton’s equations take the form

dξA

dt
= ΩAB

∂H

∂ξB
(1)

and let f and g be any two dynamical variables. Denote the Poisson bracket of f and g in the coordinates
ξA be denoted by {f, g}ξ. In a different set of coordinates, χA (ξ) , we have

{f, g}χ = ΩAB
∂f

∂χA
∂g

∂χB

= ΩAB
(
∂ξC

∂χA
∂f

∂ξC

)(
∂ξD

∂χB
∂g

∂ξD

)
=

(
∂ξC

∂χA
ΩAB

∂ξD

∂χB

)
∂f

∂ξC
∂g

∂ξD

Therefore, if the coordinate transformation is canonical so that

∂ξC

∂χA
ΩAB

∂ξD

∂χB
= ΩCD
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we have
{f, g}χ = ΩAB

∂f

∂ξC
∂g

∂ξD
= {f, g}ξ

and the Poisson bracket is unchanged. We conclude that canonical transformations preserve all Poisson
brackets.

Conversely, a transformation which preserves all Poisson brackets satisfies

{f, g}χ = {f, g}ξ(
∂ξC

∂χA
ΩAB

∂ξD

∂χB

)
∂f

∂ξC
∂g

∂ξD
= ΩCD

∂f

∂ξC
∂g

∂ξD

for all f, g and must therefore be canonical.
An important special case of the Poisson bracket occurs when one of the functions is the Hamiltonian.

In that case, we have

{f,H} = ΩAB
∂f

∂ξA
∂H

∂ξB

=
∂f

∂xi
∂H

∂pi
− ∂f

∂pi
∂H

∂xi

=
∂f

∂xi
dxi

dt
− ∂f

∂pi

(
−dpi
dt

)
=

df

∂t
− ∂f

∂t

or simply,
df

∂t
= {f,H}+

∂f

∂t

This shows that as the system evolves classically, the total time rate of change of any dynamical variable is
the sum of the Poisson bracket with the Hamiltonian and the partial time derivative. If a dynamical variable
has no explicit time dependence, ∂f∂t = 0, then the total time derivative is just the Poisson bracket with the
Hamiltonian.

The coordinates provide another important special case. Since neither xi nor pi has any explicit time
dependence, we have

dxi

dt
=

{
H,xi

}
dpi
dt

= {H, pi} (2)

or simply ξ̇A =
{
H, ξA

}
, and we can check this directly that this reproduces Hamilton’s equations,

dqi
dt

=
{
H,xi

}
=

N∑
j=1

(
∂xi

∂xj
∂H

∂pj
− ∂xi

∂pj

∂H

∂xj

)

=

N∑
j=1

δij
∂H

∂pj

=
∂H

∂pi
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and
dpi
dt

= {H, pi}

=

N∑
j=1

(
∂pi
∂qj

∂H

∂pj
− ∂pi
∂pj

∂H

∂qj

)
= −∂H

∂qi

Notice that since qi, pi and are all independent, and do not depend explicitly on time, ∂qi
∂pj

= ∂pi
∂qj

= 0 =
∂qi
∂t = ∂pi

∂t .
We also have the commutator of the Hamiltonian with the Hamiltonian itself,

dH

dt
= {H,H}+

∂H

∂t

=
∂H

∂t

so if the Hamiltonian is not explicitly time-dependent, then it is a constant of the motion.
More generally, a dynamical variable with no explicit time dependence, ∂f

∂t = 0, is a constant of the
motion if and only if it has vanishing Poisson bracket with the Hamiltonian, {H, f} = 0.

2 Canonical transformations
We now define the fundamental Poisson brackets. Suppose xi and pj are a set of coordinates on phase space
such that Hamilton’s equations hold. Since they themselves are functions of (xm, pn) they are dynamical
variables and we may compute their Poisson brackets with one another. With ξA = (xm, pn) we have{

xi, xj
}
ξ

= ΩAB
∂xi

∂ξA
∂xj

∂ξB

=

N∑
m=1

(
∂xi

∂xm
∂xj

∂pm
− ∂xi

∂pm

∂xj

∂xm

)
= 0

for xi with xj , {
xi, pj

}
ξ

= −
{
pj , x

i
}
ξ

= ΩAB
∂xi

∂ξA
∂pj
∂ξB

=

N∑
m=1

(
∂xi

∂xm
∂pj
∂pm

− ∂xi

∂pm

∂pj
∂xm

)

=

N∑
m=1

δimδ
m
j

= δij

for xi with pj and finally

{pi, pj}ξ = ΩAB
∂pi
∂ξA

∂pj
∂ξB

=

N∑
m=1

(
∂pi
∂xm

∂pj
∂pm

− ∂pi
∂pm

∂pj
∂xm

)
= 0
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for pi with pj . The subscript ξ on the bracket indicates that the partial derivatives are taken with respect
to the coordinates ξA =

(
xi, pj

)
. We summarize these relations as{

ξA, ξB
}
ξ

= ΩAB

However, since Poisson brackets are preserved by canonical transformations, this will hold in any canonical
coordinates,

{
ξA, ξB

}
χ

= ΩAB .
We summarize the results of this subsection with a theorem: Let the coordinates ξA be canonical. Then

a coordinate transformation χA (ξ) is canonical if and only if it satisfies the fundamental bracket relation{
χA, χB

}
ξ

= ΩAB

For proof, note that the bracket on the left is defined by

{
χA, χB

}
ξ

= ΩCD
∂χA

∂ξC
∂χB

∂ξD

so in order for χA to satisfy the canonical bracket relation we must have

ΩCD
∂χA

∂ξC
∂χB

∂ξD
= ΩAB (3)

which is just the condition shown above for the coordinate transformation χA (ξ) to be canonical. Conversely,
suppose the transformation χA (ξ) is canonical, so that eq.(3) holds. Then, computing the Poisson bracket

{
χA, χB

}
ξ

= ΩCD
∂χA

∂ξC
∂χB

∂ξD
= ΩAB

so χA satisfies the fundamental bracked relation.
In summary, each of the following statements is equivalent:

1. χA (ξ) is a canonical transformation.

2. χA (ξ) is a coordinate transformation of phase space that preserves Hamilton’s equations.

3. χA (ξ) preserves the symplectic form, according to

ΩAB
∂ξC

∂χA
∂ξD

∂χB
= ΩCD

4. χA (ξ) satisfies the fundamental bracket relations{
χA, χB

}
ξ

= ΩAB

These bracket relations represent a set of integrability conditions that must be satisfied by any new set of
canonical coordinates. When we formulate the problem of canonical transformations in these terms, it is not
obvious what functions qi

(
xj , pj

)
and πi

(
xj , pj

)
will be allowed. Fortunately there is a simple procedure

for generating canonical transformations, which we develop in the next section.
We end this section with three examples of canonical transformations.
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2.1 Example 1: Coordinate transformations
Let

(
xi, pj

)
be one set of canonical variables. Suppose we define new configuration space variables, qi, be an

arbitrary invertible function of the spatial coordinates:

qi = qi
(
xj
)

We seek a set of momentum variables πj such that
(
qi, πj

)
are canonical. For this they must satisfy the

fundamental Poisson bracket relations: {
qi, qj

}
x,p

= 0{
qi, πj

}
x,p

= δij

{πi, πj}x,p = 0

Check each:

{
qi, qj

}
x,p

=

N∑
m=1

(
∂qi

∂xm
∂qj

∂pm
− ∂qi

∂pm

∂qj

∂xm

)
= 0

since ∂qj

∂pm
= 0. For the second bracket,

δij =
{
qi, πj

}
x,p

=

N∑
m=1

(
∂qi

∂xm
∂πj
∂pm

− ∂qi

∂pm

∂πj
∂xm

)

=

N∑
m=1

∂qi

∂xm
∂πj
∂pm

Since qi is independent of pm, we can satisfy this only if

∂πj
∂pm

=
∂xm

∂qj

Integrating gives

πj =
∂xn

∂qj
pn + cj (x)

with the cj an arbitrary functions of xi. Choosing cj = 0, we compute the final bracket:

{πi, πj}x,p =
∂πi
∂xm

∂πj
∂pm

− ∂πi
∂pm

∂πj
∂xm

=
∂

∂xm

(
∂xn

∂qi
pn

)
∂

∂pm

(
∂xs

∂qj
ps

)
− ∂

∂pm

(
∂xn

∂qi
pn

)
∂

∂xm

(
∂xs

∂qj
ps

)
=

∂xm

∂qj
∂

∂xm

(
∂xn

∂qi

)
pn −

∂xm

∂qi
∂

∂xm

(
∂xn

∂qj

)
pn

=

(
∂2xn

∂qj∂qi
pn −

∂2xn

∂qi∂qj

)
pn

= 0

Exercise: Show that the final bracket, {πi, πj}x,p still vanishes provided ci = ∂f
∂qi for some function f (q).
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Therefore, the transformations

qj = qj(xi)

πj =
∂xn

∂qj
pn +

∂f

∂qj

is a canonical transformation for any functions qi(x). This means that the symmetry group of Hamilton’s
equations is at least as big as the symmetry group of the Euler-Lagrange equations.

2.2 Example 2: Interchange of x and p.

The transformation

qi = pi

πi = −xi

is canonical. We easily check the fundamental brackets:{
qi, qj

}
x,p

= {pi, pj}x,p = 0{
qi, πj

}
x,p

=
{
pi,−xj

}
x,p

=
{
xj , pi

}
x,p

= δji
{πi, πj}x,p =

{
−xi,−xj

}
x,p

= 0

Interchange of xi and pj , with a sign, is therefore canonical. The use of generalized coordinates in Lagrangian
mechanics does not include such a possibility, so Hamiltonian dynamics has a larger symmetry group than
Lagrangian dynamics.

For our next example, we first show that the composition of two canonical transformations is also canon-
ical. Let ψ (χ) and χ (ξ) both be canonical. Defining the composition transformation, ψ (ξ) = ψ (χ (ξ)) , we
compute

ΩCD
∂ψA

∂ξC
∂ψB

∂ξD
= ΩCD

(
∂ψA

∂χE
∂χE

∂ξC

)(
∂ψB

∂χF
∂χF

∂ξD

)
=

(
∂χE

∂ξC
∂χF

∂ξD
ΩCD

)
∂ψA

∂χE
∂ψB

∂χF

= ΩEF
(
∂ψA

∂χE

)(
∂ψB

∂χF

)
= ΩAB

so that ψ (ξ) is canonical.

2.3 Example 3: Momentum transformations
By the previous results, the composition of an arbitratry coordinate change with x, p interchanges is canon-
ical. Consider the effect of composing (a) an interchange, (b) a coordinate transformation, and (c) an
interchange.

For (a), let

q̃i = pi

π̃i = −xi
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Then for (b) we choose an arbitrary function of q̃i :

Qi = F i
(
q̃j
)

Pi =
∂q̃n

∂Qi
π̃n

Finally, for (c), another interchange:

qi = Pi

πi = −Qi

Combining all three, we have

qi = Pi =
∂q̃n

∂Qi
π̃n = −∂p

n

∂πi
xn

πi = −Qi = F i
(
q̃j
)

= F i (pj)

so that πi is replaced by an arbitrary function of the original momenta. This establishes that replacing the
momenta by any independent functions of the momenta, preserves Hamilton’s equations as long as we choose
the proper coordinates qi.

3 Generating functions
There is a systematic approach to canonical transformations using generating functions. We will give a
simple example of the technique. Given a system described by a Hamiltonian H(xi, pj), we seek another
Hamiltonian H ′(qi, πj) such that the equations of motion have the same form, namely

dxi

dt
=

∂H

∂pi
dpi
dt

= −∂H
∂xi

in the original system and

dqi

dt
=

∂H ′

∂πi
dπi
dt

= −∂H
′

∂qi

in the transformed variables. The principle of least action must hold for each pair:

S =

ˆ (
pidx

i −Hdt
)

S′ =

ˆ (
πidq

i −H ′dt
)

where S and S′ differ by at most a constant. Correspondingly, the integrands may differ by the addition of
a total differential, df = df

dtdt, since this will integrate to a surface term and therefore will not contribute to
the variation.

In general we may therefore write

pidx
i −Hdt = πidq

i −H ′dt+ df
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and solve for the differential df
df = pidx

i − πidqi + (H ′ −H) dt

For the differential of f to take this form, it must be a function of xi, qi and t, f = f(xi, qi, t). Therefore,
the differential of f is

df =
∂f

∂xi
dxi +

∂f

∂qi
dqi +

∂f

∂t
dt

Equating the expressions for df we match up terms to require

pi =
∂f

∂xi
(4)

πi = − ∂f
∂qi

(5)

H ′ = H +
∂f

∂t
(6)

The first equation

pi =
∂f(xj , qj , t)

∂xi
(7)

gives qi implicitly in terms of the original variables, while the second determines πi. This choice fixes the
form of πi by eq.(5), while eq.(6) gives the new Hamiltonian in terms of the old one. The function f is the
generating function of the transformation.

There are other types of generating functions. By making a Legendre transformation, we can change the
independent variables. For example, setting

f = pix
i + f2 (pi, qi, t)

we have

pidx
i −Hdt = πidq

i −H ′dt+ df

= πidq
i −H ′dt+ dpix

i + pidx
i + df2 (pi, qi, t)

−Hdt = πidq
i −H ′dt+ dpix

i + df2 (pi, qi, t)

so that the independent variables are now (pi, qi), satisfying

xi = − ∂f
∂pi

πi =
∂f

∂qi

H ′ = H +
∂f

∂t

We may also define

f = −πiqi + f3
(
xi, πj , t

)
f = pix

i − πiqi + f4
(
pi, πj , t

)
so that the independent variables may be taken as either of the new coordinates with either of the old
coordinates.
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3.1 Example 1
Let f2 be a general quadratic,

f2
(
pi, q

j , t
)

=
1

2

(
aij (t) qiqj + bij (t) piq

j + cij (t) pipj
)

Then

xi = − ∂

∂pi

(
1

2

(
aijq

iqj + 2bijpiq
j + cijpipj

))
= −

(
bijq

j + cijpj
)

πi =
∂

∂qi

(
1

2

(
aijq

iqj + 2bijpiq
j + cijpipj

))
= aijq

j + bijpi

H ′ = H +
1

2

(
ȧij (t) qiqj + ḃij (t) piq

j + ċij (t) pipj

)
3.2 Example 2
Let

f2
(
pi, q

j , t
)

= g (p, t) + gi (p) qi +
1

2
fij (p) qiqj +

1

3!
fijk (p) qiqjqk

Then

xi = − ∂

∂pi

(
g (p, t)− gi (p) qi − 1

2
fij (p) qiqj − 1

3!
fijk (p) qiqjqk

)
πi = gi (p)− fij (p) qj − 1

2
fijk (p) qjqk

H ′ = H +
∂

∂t
g (p, t)
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