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1 Functionals
Informed discussion of Lagrangian methods is helped by introducing the idea of a functional. To understand
it, think of a function, f (x), as a mapping from the reals to the reals,

f : R −→ R

that is, given one real number, x, the functions hands us another real number, f (x). This generalizes readily
to functions of several variables, for example, f (x) is a map from R3 to R while the electric field E (x, t)
maps E : R4 −→ R3.

In integral expressions, we meet a different sort of mapping. Consider

F [x (t)] =

t2ˆ

t1

x (t) dt

where we introduce square brackets, [ ], to indicate that F is a functional. Given any function x (t), the
integral will give us a definite real number, but now we require the entire function, x (t), to compute it.
Define F to be a function space, in this case the set of all integrable functions x (t) on the interval [t1, t2].
Then F is a mapping from this function space to the reals,

F : F −→ R

Over the course of the twentieth century, functionals have played an increasingly important role. Introduced
by P. J. Daniell in 1919, functionals were used by N. Weiner over the next two years to describe Brownian
motion. Their real importance to physics emerged with R. Feynman’s path integral formulation of quantum
mechanics in 1948 based on Dirac’s 1933 use of the Weiner integral.

We will be interested in one particular functional, called the action or action functional, given for the
Newtonian mechanics of a single particle by

S [x (t)] =

t2ˆ

t1

L (x, ẋ, t) dt

where the Lagrangian, L (x, ẋ, t), is the difference between the kinetic and potential energies,

L (x, ẋ, t) = T − V

2 Some historical observations
At the time of the development of Lagrangian and Hamiltonian mechanics, and even into the 20th century, the
idea of a uniquely determined classical path was deeply entrenched in physicists’ thinking about motion. The
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great deterministic power of the idea underlay the industrial age and explained the motions of planets. It is
not surprising that the probabilistic preditions of quantum mechanics were strongly resisted1 but experiment
- the ultimate arbiter - decrees in favor of quantum mechanics.

This strong belief in determinism made it difficult to understand the variation of the path of motion
required by the new approaches to classical mechanics. The idea of “varying a path” a little bit away from
the classical solution simply seemed unphysical. The notion of a “virtual displacement” dodges the dilemma
by insisting that the change in path is virtual, not real.

The situation is vastly different now. Mathematically, the development of functional calculus, including
integration and differentiation of functionals, gives a language in which variations of a curve are an integral
part. Physically, the path integral formulation of quantum mechanics tells us that one consistent way of un-
derstanding quantum mechanics is to think of the quantum system as evolving over all paths simultaneously,
with a certain weighting applied to each and the classical path emerging as the expected average. Classical
mechanics is then seen to emerge as this distribution of paths becomes sharply peaked around the classical
path, and therefore the overwhelmingly most probably result of measurement.

Bearing these observations in mind, we will take the more modern route and ignore such notions as
“virtual work”. Instead, we seek the extremum of the action functional S [x (t)]. Just as the extrema of a
function f (x) are given by the vanishing of its first derivative, df

dx = 0, we ask for the fanishing of the first
functional derivative,

δS [x (t)]

δx (t)
= 0

Then, just as the most probable value of a function is near where it changes most slowly, i.e., near extrema,
the most probable path is the one giving the extremum of the action. In the classical limit, this is the only
path the system can follow.

3 Variation of the action and the functional derivative
For classical mechanics, we do not need the formal definition of the functional derivative, which is given in
a separate Note for anyone interested. Instead, we make use of the extremum condition above and use our
intuition about derivatives. The derivative of a function is given by

df

dx
= lim
ε→0

f (x+ ε)− f (x)
ε

Notice that the limit removes all but the linear part of the numerator, f (x+ ε)−f (x) =
(
f (x) + ε dfdx + 1

2ε
2 d

2f
dx2 + · · ·

)
−

f (x)⇒
(
f (x) + ε dfdx

)
−f (x). The function at x cancels and we are left with the derivative. If the derivative

vanishes, we do not need the dx part, but only

df = (f (x+ dx)− f (x))|linear order = 0

where we have set ε = dx. Applying the same logic to the vanishing functional derivative, we require

δS [x (t)] ≡ (S [x (t) + δx (t)]− S [x (t)])|linear order = 0

δS is called the variation of the action, and δx (t) is an arbitrary variation of the path. Thus, if x (t) one path
in the xt-plane, x (t) + δx (t) is another path in the plane that differs slightly from the first. The variation
δx is required to vanish at the endpoints, δx (t1) = δx (t2) = 0 so that the two paths both start and finish
in the same place at the same time.

1Einstein’s frustration is captured in his assertion to Cornelius Lanczos, “ . . . dass [Herrgott] würfelt . . . kann ich keinen
Augenblick glauben.” (I cannot believe for an instant that God plays dice [with the world]). He later abbreviated this in
conversations with Niels Bohr, “Gott würfelt nicht. . .”, God does not play dice. Bohr replied that it is not for us to say how
God chooses to run the universe. See http://de.wikipedia.org/wiki/Gott_würfelt_nicht
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In defining the variation in this way, we avoid certain subtleties arising from places where the paths cross
and δx (t) = 0, and also the formal need to allow δx to be completely arbitrary rather than always small.
The variation is sufficient for our purpose.

Now consider the actual form of the variation when the action is given by

S [x (t)] =

t2ˆ

t1

L (x, ẋ, t) dt

with L (x, ẋ, t) = T − V . For a single particle in a position-dependent potential V (x),

S [x (t)] =

t2ˆ

t1

(
1

2
mẋ2 − V (x)

)
dt

and setting δx (t) = h (t), the vanishing variation gives

0 = δS [x (t)]

= (S [x+ h]− S [x])|linear order

=

t2ˆ

t1

dt

((
1

2
m
(
ẋ+ ḣ

)2
− V (x+ h)

)
−
(
1

2
mẋ2 − V (x)

))∣∣∣∣∣∣
linear order

=

t2ˆ

t1

dt

((
1

2
m
(
ẋ2 + 2ẋ · ḣ+ ḣ2

)
− V (x+ h)

)
−
(
1

2
mẋ2 − V (x)

))∣∣∣∣∣∣
linear order

Now we drop the small quadratic term, ḣ2, cancel the kinetic energy 1
2mẋ2 along the original path x (t),

and expand the potential in a Taylor series,

0 =

t2ˆ

t1

dt
(
mẋ · ḣ− V (x+ h) + V (x)

)∣∣∣∣∣∣
linear order

=

t2ˆ

t1

dt
(
mẋ · ḣ−

(
V (x) + h ·∇V (x) +O

(
h2
)
+ . . .

)
+ V (x)

)∣∣∣∣∣∣
linear order

=

t2ˆ

t1

dt
(
mẋ · ḣ− h ·∇V (x)

)
Our next goal is to rearrange this so that only the arbitrary vector h appears as a linear factor, and not its
derivative. We integrate by parts. Using the product rule to write

d

dt
(mẋ · h) = mẍ · h+mẋ · ḣ

and solving for the term we have, mẋ · ḣ = d
dt (mẋ · h)−mẍ ·h, the vanishing variation of the action implies

0 =

t2ˆ

t1

dt

(
d

dt
(mẋ · h)−mẍ · h− h ·∇V (x)

)

= mẋ (t2) · h (t2)−mẋ (t1) · h (t1)−
t2ˆ

t1

dt (mẍ+∇V (x)) · h
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= −
t2ˆ

t1

dt (mẍ+∇V (x)) · h

since h (t2) = h (t1) = 0. Finally, since h (t) is arbitrary in both direction and magnitude, the only way the
integral can vanish2 is if

mẍ = −∇V (x)

and this is Newton’s second law where the force is derived from the potential V .

4 The Euler-Lagrange equation
For many particle systems, we may write the action as a sum over all of the particles. However, there are
vast simplifications that occur. In a rigid body containing many times Avogadro’s number of particles, the
rigidity constraint reduces the number of degrees of freedom to just six - three to specify the position of
the center of mass, and three more to specify the direction and magnitude of rotation about this center.
Moreover, the use of generalized coordinates may give expressions only vaguely reminiscent of the single
particle kinetic and potential energies. Therefore, it is useful to take a general approach, supposing the
Lagrangian to depend on N generalized coordinates qi, their velocities, q̇i, and time. We take the potential
to depend only on the positions, not the velocities or time, so that

L (qi, q̇i, t) = T (qi, q̇i, t)− V (qi)

Despite the generality of this form, we may find the equations of motion.
Carrying out the variation as before, the ith position coordinate may change by an amount hi (t), which

vanishes at t1 and t2. Following the same steps as for the single particle, vanishing variation gives,

0 = δS [q1, q2, . . . , qN ]

= (S [qi + hi]− S [qi])|linear order

=

t2ˆ

t1

dt
(
T
(
qi + hi, q̇i + ḣi, t

)
− V (qi + hi)− (T (qi, q̇i, t)− V (qi))

)∣∣∣∣∣∣
linear order

=

t2ˆ

t1

dt

((
T (qi, q̇i, t) +

N∑
i=1

hi
∂T

∂qi
+

N∑
i=1

ḣi
∂T

∂q̇i
− V (qi)−

N∑
i=1

hi
∂V

∂qi

)
− (T (qi, q̇i, t)− V (qi))

)∣∣∣∣∣∣
linear order

=

N∑
i=1

t2ˆ

t1

dt

(
hi
∂T

∂qi
+ ḣi

∂T

∂q̇i
− hi

∂V

∂qi

)
where the Taylor series to first order of a function of more than one variable contains the linear term for
each, f (x+ ε, y + δ) = f (x, y) + ε∂f∂x + δ ∂f∂y + higher order terms. The center term contains the change in
velocities, so we integrate by parts,

N∑
i=1

t2ˆ

t1

dt ḣi
∂T

∂q̇i
=

N∑
i=1

t2ˆ

t1

dt

(
d

dt

(
hi
∂T

∂q̇i

)
− hi

d

dt

(
∂T

∂q̇i

))

=

N∑
i=1

(
hi (t2)

∂T

∂q̇i
(t2)− hi (t1)

∂T

∂q̇i
(t1)

)
−

N∑
i=1

t2ˆ

t1

dt hi
d

dt

(
∂T

∂q̇i

)
2This is easy to see. Suppose there is a point of the path x (t′) where mẍ + ∇V (x) is nonzero. Then choose h paral-

lel to this direction and nonvanishing only in an infinitesimal region about that point. Then the integral is approximately
|mẍ (t′) +∇V (x (t′))|h (t′) > 0, a contradiction.
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= −
N∑
i=1

t2ˆ

t1

dt hi
d

dt

(
∂T

∂q̇i

)

The full expression is now,

0 =

N∑
i=1

t2ˆ

t1

dt hi

(
∂T

∂qi
− d

dt

(
∂T

∂q̇i

)
− ∂V

∂qi

)

=

N∑
i=1

t2ˆ

t1

dt hi

(
∂L

∂qi
− d

dt

(
∂L

∂q̇i

))

where L = T − V and we use ∂V
∂q̇i

= 0 to replace T with L in the velocity derivative term. Now, since each
hi is independent of the rest and arbitrary, each term in the sum must vanish separately. The result is the
Euler-Lagrange equation,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0
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