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1 Hooke’s law in two dimensions
Consider a radial Hooke’s law force in 2-dimensions,

F = −krr̂

where the force is along the radial unit vector r̂ and depends on the distance from the origin, r, where

r̂ = î cosϕ+ ĵ sinϕ

r =
√
x2 + y2

and therefore

r = rr̂

= x̂i+ yĵ

Let the initial position and velocity (at t0 = 0) be

x (0) = x0 î

v (0) = v0ĵ

Find the motion, x (t), and determine whether this initial condition is sufficiently general.

2 Solution in Cartesian coordinates
In Cartesian coordinates, the solution is immediate. Writing the force and acceleration as

F = −k
(
x̂i+ yĵ

)
a = ẍ̂i+ ÿĵ

where the overdots denote time derivatives, e.g., ẍ ≡ d2x
dt2 , we have

−k
(
x̂i+ yĵ

)
= m

(
ẍ̂i+ ÿĵ

)
Defining the frequency of oscillation by ω2 = k

m , the equation decouples into two simple harmonic oscillators,

mẍ+ ω2x = 0

mÿ + ω2y = 0
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with the immediate solution

x = a cosωt+ b sinωt

= A cosω (t− t0)
y = C cosωt+D sinωt

Since the force diverges as the motion moves off to infinity, we expect the motion to be bounded. We can
check this with the energy theorem,

xˆ

x0

F · dx =
1

2
mv2 − 1

2
mv2

0

−k
x̂

x0

(
x̂i+ yĵ

)
·
(
dx̂i+ dyĵ

)
=

1

2
mv2 − 1

2
mv2

0

−k
x̂

x0

(xdx+ ydy) =
1

2
mv2 − 1

2
mv2

0

−k

 xˆ

x0

xdx+

yˆ

y0

ydy

 =
1

2
mv2 − 1

2
mv2

0

−k
(
x2 + y2

)
+ k

(
x20 + y20

)
=

1

2
mv2 − 1

2
mv2

0

and therefore

E =
1

2
mv2

0 +
1

2
kx2

0

=
1

2
mv2 +

1

2
kx2

remains constant. For finite initial conditions, E is finite, so both the velocity and position remain bounded
at all times,

|x| ≤ 2E

k

|v| ≤ 2E

m

This means there must be turning points for x, i.e., points where a positive velocity ẋ decreases to zero as |x|
reaches a maximum |xmax| begins to decrease. Notice also that the velocity cannot be zero for any position
less than the maximum if E is nonzero.

These observations allow us to choose the initial conditions so that ẋ = 0, and we may rotate the xy-axes
until x-axis lies in the direction of the maximum vector xmax. This means the initial x0 = xmax and ẋ0 = 0.
Since x is in the x-direction, y0 = 0, and from the conservation of energy ẏ0 =

√
2
m

(
E − 1

2kx
2
max

)
≡ vmin.

Choosing the initial time to be t0 = 0 so that x (0) = xmax, ẋ (0) = 0, we have

x = xmax cosωt

y =
vmin
ω

sinωt

The shape of the orbit is an ellipse, since

x2

x2max
+

y2

(vmin/ω)
2 = 1
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3 Solution as a central force problem
We may treat the problem in polar coordinates instead. This introduces complications which are unnecessary
here, but which illustrate several of the general techniques used for the Kepler problem, or other central forces,
F = −f (r) r̂.

We begin with the energy theorem. Taking the dot product with r̂, we have

F = −krr̂
F · r̂ = −kr

To substitute into the second law, we need the acceleration in polar coordinates:

r = rr̂

v =
d

dt
(rr̂)

=
dr

dt
r̂+ r

dr̂

dt

Now, with
r̂ = î cosϕ+ ĵ sinϕ

we have

dr̂

dt
=

(
−î sinϕ+ ĵ cosϕ

) dϕ
dt

= ϕ̂ϕ̇

so that

v =
dr

dt
r̂+ r

dr̂

dt
= ṙr̂+ rϕ̇ϕ̂

The acceleration is then,

a =
d

dt
(ṙr̂+ rϕ̇ϕ̂)

=

(
r̈r̂+ ṙϕ̇ϕ̂+ ṙϕ̇ϕ̂+ rϕ̈ϕ̂+ rϕ̇

d

dt
ϕ̂

)
Then, using

d

dt
ϕ̂ =

d

dt

(
−î sinϕ+ ĵ cosϕ

)
= ϕ̇

(
−î cosϕ− ĵ sinϕ

)
= −ϕ̇r̂

the acceleration becomes

a = r̈r̂+ ṙϕ̇ϕ̂+ ṙϕ̇ϕ̂+ rϕ̈ϕ̂− rϕ̇2r̂

=
(
r̈ − rϕ̇2

)
r̂+ (2ṙϕ̇+ rϕ̈) ϕ̂

Now Newton’s second law gives

−krr̂ = m
(
r̈ − rϕ̇2

)
r̂+m (2ṙϕ̇+ rϕ̈) ϕ̂
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so we have two independent equations,

−kr = m
(
r̈ − rϕ̇2

)
0 = m (2ṙϕ̇+ rϕ̈)

Define ω2 ≡ k
m . We can integrate the second immediately:

2ṙϕ̇ = −rϕ̈
2

r

dr

dt
= − 1

ϕ̇

dϕ̇

dt
rˆ

r0

2

r
dr = −

ϕ̂̇

ϕ̇0

1

ϕ̇
dϕ̇

ln
r2

r20
= − ln

ϕ̇

ϕ̇0

ln
r2

r20
= ln

ϕ̇0

ϕ̇

r2ϕ̇ = r20ϕ̇0

Recognizing L = mr2ϕ̇, we see that this is conservation of angular momentum. We might have seen the
constant more readily by multiplying the original equation by r,

0 = m
(
2rṙϕ̇+ r2ϕ̈

)
=

d

dt

(
mr2ϕ̇

)
Lagrangian techniques will let us find results like this quickly.

Setting ϕ̇ = L
mr2 with L constant, the first equation now becomes

−ω2r =

(
r̈ − r

(
L

mr2

)2
)

−ω2r = r̈ − L2

m2r3

0 = r̈ + ω2r − L2

m2r3

The energy theorem gives us the first integral. Multiplying by ṙ

0 = ṙr̈ + ω2rṙ − L2

m2r3
ṙ

= ṙ
dṙ

dt
+ ω2r

dr

dt
− L2

m2r3
dr

dt

then by dt,

ṙdṙ = −
(
ω2r − L2

m2r3

)
dr

ṙˆ

ṙ0

ṙdṙ = −
rˆ

r0

(
ω2r − L2

m2r3

)
dr

1

2

(
ṙ2 − ṙ20

)
= −ω

2

2

(
r2 − r20

)
−
(

L2

2m2r2
− L2

2m2r20

)
1

2

(
ṙ2 +

L2

m2r2
+ ω2r2

)
=

1

2

(
ṙ20 + ω2r20 +

L2

m2r20

)
≡ E

m
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Now solve for the radial velocity, ṙ,

ṙ2 +
L2

m2r2
+ ω2r2 =

2E

m

dr

dt
=

√
2E

m
− L2

m2r2
− ω2r2

We can integrate this to find r (t), but it is more instructive to find the shape of the spatial orbit, r (ϕ). To
do this, divide the whole equation by ϕ̇. Since dr/dt

dϕ/dt =
dr
dϕ , we get

dr

dϕ
=

1

ϕ̇

√
2E

m
− L2

m2r2
− k

m
r2

=
mr2

L

√
2E

m
− L2

m2r2
− k

m
r2

= r

√
−1 + 2mE

L2
r2 − m2ω2

L2
r4

Then
ϕ̂

0

dϕ =

rˆ

r0

dr

r
√
−1 + 2mE

L2 r2 − m2ω2

L2 r4

ϕ =

rˆ

r0

dr

r
√
−1 + 2mE

L2 r2 − m2ω2

L2 r4

Let r = 1
u , so dr = −

du
u2 and

ϕ = −
rˆ

r0

du

u
√
−1 + 2mE

L2u2 − m2ω2

L2u4

= −
rˆ

r0

udu√
−u4 + 2mE

L2 u2 − m2ω2

L2

We leave the limits in terms of r and substitute back later. Now with y = u2,

ϕ = −1

2

rˆ

r0

dy√
−y2 + 2mE

L2 y − m2ω2

L2

where we leave the limits in terms of u to substitute back later, and integrate by completing the square in
the denominator.

−y2 + 2mE

L2
y − m2ω2

L2
= −

(
y − mE

L2

)2

+
m2E2

L4
− m2ω2

L2

=
m2E2 −m2ω2L2

L4
−
(
y − mE

L2

)2

Then setting z = y − mE
L2 ,

ϕ = −1

2

rˆ

r0

dz√
m2E2−m2ω2L2

L4 − z2
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= −1

2

L2

√
m2E2 −m2ω2L2

rˆ

r0

dz√
1− L4z2

m2E2−m2ω2L2

Now substitute

sin θ =
L2z√

m2E2 −m2ω2L2

cos θdθ =
L2dz√

m2E2 −m2ω2L2

so that

ϕ = −1

2

L2

√
m2E2 −m2ω2L2

rˆ

r0

dz√
1− L4z2

m2E2−m2ω2L2

= −1

2

rˆ

r0

dθ

= − θ

2

∣∣∣∣r
r0

= − 1

2
sin−1

L2z√
m2E2 −m2ω2L2

∣∣∣∣r
r0

= − 1

2
sin−1

L2
(
y − mE

L2

)
√
m2E2 −m2ω2L2

∣∣∣∣∣
r

r0

= − 1

2
sin−1

L2
(
u2 − mE

L2

)
√
m2E2 −m2ω2L2

∣∣∣∣∣
r

r0

= −1

2
sin−1

L2
(

1
r2 −

mE
L2

)
√
m2E2 −m2ω2L2

+
1

2
sin−1

L2
(

1
r20
− mE

L2

)
√
m2E2 −m2ω2L2

Define

ϕ0 ≡
1

2
sin−1

L2
(

1
r20
− mE

L2

)
√
m2E2 −m2ω2L2

so that

ϕ = −1

2
sin−1

L2
(

1
r2 −

mE
L2

)
√
m2E2 −m2ω2L2

+ ϕ0

2 (ϕ− ϕ0) = sin−1
L2
(
mE
L2 − 1

r2

)
√
m2E2 −m2ω2L2

sin 2 (ϕ− ϕ0) =
L2
(
mE
L2 − 1

r2

)
m
√
E2 − ω2L2

=
L2
(
mE
L2 − 1

r2

)
m
√
E2 − ω2L2

This gives the equation of the orbit,√
E2 − ω2L2 sin 2 (ϕ− ϕ0) = E − L2

mr2
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L2

mr2
= E −

√
E2 − ω2L2 sin 2 (ϕ− ϕ0)

r2 =
L2

mE

1

1−
√

1− ω2L2

E2 sin 2 (ϕ− ϕ0)

Compare familiar equations for an ellipse:

r =
A

1 + ε sin θ

r2 =
B

1 + 2ε sin θ + ε2 sin2 θ

We have

r2 =
R2

1− k sin 2 (ϕ− ϕ0)

r2 − 2kr2 sinϕ cosϕ = R2

x2 + y2 − 2kxy = R2

x′2 + y′2 − 2k (x′ cosϕ+ y′ sinϕ) (y′ cosϕ− x′ sinϕ) = R2

x′2 + y′2 − 2k
(
y′x′ cos2 ϕ− x′2 cosϕ sinϕ+ y′2 sinϕ cosϕ− x′y′ sin2 ϕ

)
= R2

Let ϕ = π
4 ,

x′2 + y′2 − 2k

(
−1

2
x′2 +

1

2
y′2
)

= R2

(1 + k)x′2 + (1− k) y′2 = R2

and this is of the same form as a general ellipse,

x2

a2
+
y2

b2
= 1
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