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1 Statement of the problem
We consider particle of mass m a path through Earth (mass, M , radius R, nonrotating, uniform density),
starting at the surface at rest. The path ends at another fixed point on the surface at time t [r (s) , θ (s) , ϕ (s)],
which is a functional of the path. We wish to find the path which minimizes t. In spherical coordinates, we
have the time of flight

t =
ˆ
ds

v

Notice that the solution path to this problem is not a solution to Newton’s second law. We constrain the
particle to follow a path (r, θ, ϕ) = (r (λ) , θ (λ) , ϕ (λ)), where λ is an arbitrary parameter. We ultimately
take λ = s to be arc-length, and assume that the path is frictionless. This means that any force exerted by
the path is orthogonal to the line of motion, and therefore does not do any work. The constraint forces do
not change the energy of the particle. It is this assumption that lets us use Newtonian mechanics to find the
velocity of the particle.

Since the only force is gravity, and gravity acts only in the radial direction, we have rotational symmetry
about the center of Earth. This means we can place the initial position at any value we choose for the
angular coordinates. Therefore, for the initial position at λ = 0, we may place the particle on the equator
at ϕ = 0:

(r (0) , θ (0) , ϕ (0)) =
(
R,

π

2
, 0
)

The particle starts from rest, so we have the initial rates of change,(
dr

dλ
(0) ,

dθ

dλ
(0) ,

dϕ

dλ
(0)
)

=
(
ṙ (0) , θ̇ (0) , ϕ̇ (0)

)
= (0, 0, 0)

This makes it clear that the solution is not a solution to Newton’s second law without including the constraint
forces, because a particle with these initial conditions would otherwise fall straight to the center of Earth.
This means that the ordinary angular momentum of the particle (lϕ = mr2ϕ̇) must change.

1.1 The potential energy
For a particle in Earth’s gravitational field, the force is

F = −GME (r)m
r2

r̂

=
{
− 4πGρm

3 rr̂ r < R
−GMm

r2 r̂ r > R
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where, since M = 4π
3 R

3ρ, we may write F = −GMm
R3 rr̂ for r < R. Taking the zero of the potential at infinity

(this is arbitrary; any point will do),

V = −
rˆ

∞

Fdr

Outside Earth, V = −GMm
r as usual. Inside Earth, we may divide the integral to get

V = −
rˆ

∞

Fdr

= −
R̂

∞

Fdr −
rˆ

R

Fdr

= −GMm

R
+
GMm

R3

rˆ

R

rdr

= −GMm

R
− GMm

2R3

(
R2 − r2

)
The potential is continuous, vanishes at infinity, and reaches its most negative value at the origin.

1.2 The Lagrangian and conserved quantities
In spherical coordinates the kinetic energy is

T =
1
2
m
(
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

)
where the overdot here means d

dt . Therefore, inside,

L =
1
2
m
(
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

)
+
GMm

R
+
GMm

2R3

(
R2 − r2

)
There is no explicit time dependence of the Lagrangian, so we have a conserved energy,

E =
∑
i

∂L

∂q̇i
q̇i − L

=
∂L

∂ṙ
ṙ +

∂L

∂θ
θ̇ +

∂L

∂ϕ̇
ϕ̇− L

= m
(
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

)
− L

=
1
2
m
(
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

)
− GMm

R
− GMm

2R3

(
R2 − r2

)
The speed along any curve is therefore

v =
√
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

=

√
2E
m

+
2GM
R

+
GM

R3
(R2 − r2)

Since the particle starts from rest at r = R, we can evaluate the energy there by setting r = R,

E = −GMm

R
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so we have

v =

√
−2GM

R
+

2GM
R

+
GM

R3
(R2 − r2)

=

√
GM

R3
(R2 − r2)

=

√
Rg

(
1− r2

R2

)
where g = GM

R2 is the usual surface acceleration. The time is

t =
ˆ

ds√
Rg
(
1− r2

R2

)
=
ˆ √

dr2 + r2dθ2 + r2 sin2 θdϕ2√
Rg
(
1− r2

R2

)
=
ˆ
√(

dr
dλ

)2
+ r2

(
dθ
dλ

)2
+ r2 sin2 θ

(
dϕ
dλ

)2

√
Rg
(
1− r2

R2

) dλ

After variation, we will set λ = s. It will be convenient from here on to change our notation and let the
overdot denote d

dλ −→
d
ds instead of d

dt , and from here on always write d
dt explicitly for time derivatives.

These are related by,
d

dt
=
ds

dt

d

ds
= v

d

ds

though we will not need this. Employing this change, we may write the time functional as

t [r (λ) , θ (λ) , ϕ (λ)] =
ˆ √

ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2√
Rg
(
1− r2

R2

) dλ

We get a second constant of motion by noting that ϕ is cyclic, so that

Lϕ =
∂L

∂ϕ̇

=
1√

Rg
(
1− r2

R2

) ∂

∂ϕ̇

(√
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

)

=
r2 sin2 θϕ̇√

ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

√
Rg
(
1− r2

R2

)
is constant, and when we set λ = s,

Lϕ =
r2 sin2 θϕ̇√
Rg
(
1− r2

R2

)
Since the units of ϕ̇ = dϕ

dλ are of inverse length, Lϕ has units of time, m2

m
√
m2/sec2

= sec.

We can find most of what we need from the two conserved quantities, E,Lϕ, but we now digress to find
the equations for the extremal time path and check the initial conditions.
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1.3 Equations of the path
First, we reconsider the initial conditions. We know that the speed, ds

dt , and velocity components start at

zero, but now we need to know the initial values of
[(
dr
ds

)
,
(
dθ
ds

)
,
(
dϕ
ds

)]
. These are related to the velocity by

dr

ds
=

dt

ds

dr

dt
dθ

ds
=

dt

ds

dθ

dt
dϕ

ds
=

dt

ds

dϕ

dt

and each of these becomes ambiguous since dt
ds = 1

ds
dt

diverges. We can get help from the constants of motion.
From the energy relation,

v =
ds

dt
=

√
Rg

(
1− r2

R2

)
we have

dr

ds
=

1√
Rg
(
1− r2

R2

) drdt
dθ

ds
=

1√
Rg
(
1− r2

R2

) dθdt
dϕ

ds
=

1√
Rg
(
1− r2

R2

) dϕdt
Then, since Lϕ must be non-zero and finite, its expression at the initial conditions gives

Lϕ =
r2 sin2 θ√
Rg
(
1− r2

R2

) ϕ̇
=

R2 sin2 π
2√

Rg
(
1− r2

R2

)
 1√

Rg
(
1− r2

R2

) dϕdt


=
R2

Rg
(
1− r2

R2

) dϕ
dt

which means that

dϕ

dt
=

Lϕg

R

(
1− r2

R2

)
and the initial behavior of ϕ̇ must be

dϕ

ds
=

1√
Rg
(
1− r2

R2

) dϕdt
=

1√
Rg
(
1− r2

R2

) LϕgR
(

1− r2

R2

)

=
1√
Rg

Lϕg

R

√(
1− r2

R2

)
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which also vanishes at r = R. For θ and for r we must use the equations for the path.
We vary the time functional with respect to each coordinate function. Since we must vary before setting

λ = s, it simplifies the notation to notice that

ds =

√(
dr

dλ

)2

+ r2
(
dθ

dλ

)2

+ r2 sin2 θ

(
dϕ

dλ

)2

dλ

ṡ ≡ ds

dλ
=

√(
dr

dλ

)2

+ r2
(
dθ

dλ

)2

+ r2 sin2 θ

(
dϕ

dλ

)2

so that when we set λ = s we have

1 =
ds

ds
=

√(
dr

ds

)2

+ r2
(
dθ

ds

)2

+ r2 sin2 θ

(
dϕ

ds

)2

1 =
√
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

1.3.1 Vary r (λ)

Varying the fixed curve, but holding the endpoints fixed, we have three conditions. For δr,

0 = δrt [r (λ) , θ (λ) , ϕ (λ)]

=
ˆ 1

2
1
ṡ

2ṙδṙ + 2rδr
(
θ̇2 + sin2 θϕ̇2

)
√
Rg
(
1− r2

R2

) − 1
2

√
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2[
Rg
(
1− r2

R2

)]3/2 Rg

(
−2rδr
R2

) dλ
=
ˆ − d

dλ

1
ṡ

ṙ√
Rg
(
1− r2

R2

)
+

1
ṡ

r
(
θ̇2 + sin2 θϕ̇2

)
√
Rg
(
1− r2

R2

) +

√
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2[
Rg
(
1− r2

R2

)]3/2 gr

R

 δrdλ
so the first equation of the path is

d

dλ

1
ṡ

ṙ√
Rg
(
1− r2

R2

) =
1
ṡ

r
(
θ̇2 + sin2 θϕ̇2

)
√
Rg
(
1− r2

R2

) +

√
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2[
Rg
(
1− r2

R2

)]3/2 gr

R

and we may now set λ = s and therefore ṡ = 1. Notice also that

r
(
θ̇2 + sin2 θϕ̇2

)
=

1
r

(
r2θ̇2 + r2 sin2 θϕ̇2

)
=

1
r

(
1− ṙ2

)
we substitute and carry out the differentiation,

d

ds

ṙ√
Rg
(
1− r2

R2

) =
1− ṙ2

r
√
Rg
(
1− r2

R2

) +
gr

R
[
Rg
(
1− r2

R2

)]3/2
r̈√

Rg
(
1− r2

R2

) − 1
2

ṙ[
Rg
(
1− r2

R2

)]3/2Rg(−2rṙ
R2

)
=

1− ṙ2

r
√
Rg
(
1− r2

R2

) +
gr

R
[
Rg
(
1− r2

R2

)]3/2
r̈ +

rṙ2

R2 − r2
=

1− ṙ2

r
+

r

R2 − r2
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so finally

r̈ =
1− ṙ2

r
+
r
(
1− ṙ2

)
R2 − r2

=
1
r

(
1− ṙ2

)(
1 +

r2

R2 − r2

)
=

R2

r

1− ṙ2

R2 − r2

The divergence of this expression is because the derivatives are with respect to s, not time:

r̈ =
R2

r

1− ṙ2

R2 − r2

where

r̈ =
dṙ

ds

=
dt

ds

dṙ

dt

=
1√

Rg
(
1− r2

R2

) ddt
(
dt

ds

dr

dt

)

=
1√

Rg
(
1− r2

R2

) ddt
 1√

Rg
(
1− r2

R2

) drdt


=
1√

Rg
(
1− r2

R2

)
 1√

Rg
(
1− r2

R2

) d2r

dt2
− 1

2
Rg
(
− 2r
R2

dr
dt

)[
Rg
(
1− r2

R2

)]3/2 drdt


=
1[

Rg
(
1− r2

R2

)]2
(√

Rg

(
1− r2

R2

)
d2r

dt2
+
rg

R

(
dr

dt

)2
)

With the initial conditions

dr

dt
= 0

d2r

dt2
= g

this becomes

r̈0 = lim
r−→R

g[
Rg
(
1− r2

R2

)]3/2
If we set r = R− ε, then

r̈0 = lim
r−→R

g[
g
R (2Rε− ε2)

]3/2
= lim

r−→R

g

[2gε]3/2

we see that r̈0 diverges towards the initial value.
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1.3.2 Vary θ (λ):

Next,

0 = δθt

=
ˆ

r2θ̇δθ̇ + r2 sin θ cos θϕ̇2δθ√
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

√
Rg
(
1− r2

R2

)dλ
=
ˆ − d

dλ

r2θ̇√
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

√
Rg
(
1− r2

R2

) +
r2 sin θ cos θϕ̇2√

ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

√
Rg
(
1− r2

R2

)
 δθdλ

so that with λ = s,

d

dλ

 r2θ̇√
Rg
(
1− r2

R2

)
 =

r2 sin θ cos θϕ̇2√
Rg
(
1− r2

R2

)
r2θ̈ + 2rṙθ̇√
Rg
(
1− r2

R2

) − 1
2

r2θ̇Rg
(
− 2r
R2 ṙ

)[
Rg
(
1− r2

R2

)]3/2 =
r2 sin θ cos θϕ̇2√
Rg
(
1− r2

R2

)
r2θ̈ + 2rṙθ̇ +

r3gṙθ̇

R2g
(
1− r2

R2

) = r2 sin θ cos θϕ̇2

θ̈ = sin θ cos θϕ̇2 − 2
r
ṙθ̇ − rgṙθ̇

R2g
(
1− r2

R2

)
Now examine the early acceleration,

θ̈ = sin θ cos θϕ̇2 − 2
r
ṙθ̇ − rgṙθ̇

R2g
(
1− r2

R2

)
Substituting for r and ṙ as above, using Lϕ,

ϕ̇ =
Lϕ

√
Rg
(
1− r2

R2

)
r2 sin2 θ

and with

θ̇ =
dθ

ds

=
dt

ds

dθ

dt

=
1√

Rg
(
1− r2

R2

) dθdt
θ̈ =

1√
Rg
(
1− r2

R2

) ddt 1√
Rg
(
1− r2

R2

) dθdt
=

1
Rg
(
1− r2

R2

) d2θ

dt2
+

g
(
r
R

)[
Rg
(
1− r2

R2

)]2 drdt dθdt
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we have

θ̈ = sin θ cos θϕ̇2 − 2
r
ṙθ̇ − rṙθ̇

R2
(
1− r2

R2

)
1

Rg
(
1− r2

R2

) d2θ

dt2
+

g
(
r
R

)[
Rg
(
1− r2

R2

)]2 drdt dθdt = cos
π

2

L2
ϕRg

(
1− r2

R2

)
r4 sin4 π

2

− 2
R

1√
Rg
(
1− r2

R2

) drdt 1√
Rg
(
1− r2

R2

) dθdt − 1
R
(
1− r2

R2

) 1√
Rg
(
1− r2

R2

) drdt 1√
Rg
(
1− r2

R2

) dθdt
1

Rg
(
1− r2

R2

) d2θ

dt2
=

(
− 2
R

1
Rg
(
1− r2

R2

) − 1

R2g
(
1− r2

R2

)2 − 1

R2g
(
1− r2

R2

)2
)
dr

dt

dθ

dt

1
Rg
(
1− r2

R2

) d2θ

dt2
=

[
− 2
R2g

(
1− r2

R2

) − 2

R2g
(
1− r2

R2

)2
]
dr

dt

dθ

dt

d2θ

dt2
= − 2

R

[
2− r2

R2

1− r2

R2

]
dr

dt

dθ

dt

Now, expand in time:

r = R− 1
2
at2

θ =
π

2
+

1
2
bt2

Then

b =
2
R

[
1 + at2

R
at2

R

]
abt2

=
2
R

[
R+ at2

at2

]
abt2

=
2
R

(
R+ at2

)
b(

1 +
2a
R
t2
)
b = 0

and we must have b = 0. Therefore, the initial θ̈ also vanishes and θ = π
2 throughout the motion.

1.3.3 Vary ϕ (λ):

Finally,

0 = δϕt

=
ˆ − d

dλ

r2 sin2 θϕ̇√
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

√
Rg
(
1− r2

R2

)
 δϕdλ

so that
d

dλ

 r2 sin2 θϕ̇√
Rg
(
1− r2

R2

)
 = 0

This gives our previous constant of the motion,

Lϕ =
r2 sin2 θϕ̇√
Rg
(
1− r2

R2

)
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with the initial conditions for ϕ,

ϕ̇ =
Lϕ
R2

√
Rg

(
1− r2

R2

)
and with a time derivative,

1√
Rg
(
1− r2

R2

) dϕdt =
Lϕ
R2

√
Rg

(
1− r2

R2

)
dϕ

dt
=

Lϕg

R

(
1− r2

R2

)
which vanishes as required.

1.4 Using the constants of motion to find the path
We would like to solve for the path of motion and the total time, and we can start from the constants of
motion. Setting the initial conditions, we have:

Lϕ =
r2ϕ̇√

Rg
(
1− r2

R2

)
v =

√
Rg

(
1− r2

R2

)

where v = ds
dt =

√(
dr
dt

)2
+ r2

(
dϕ
dt

)2

.

1.4.1 Solving for the path

We wish to find dr
dt . The expression for v gives:(

ds

dt

)2

= Rg

(
1− r2

R2

)
(
dr

dt

)2

+ r2
(
dϕ

dt

)2

= Rg

(
1− r2

R2

)
(
dr

dt

)2

= Rg

(
1− r2

R2

)
− r2

(
dϕ

dt

)2

Next, eliminate dϕ
dt ,

Lϕ =
r2√

Rg
(
1− r2

R2

) ϕ̇
=

r2√
Rg
(
1− r2

R2

) dtds dϕdt
dϕ

dt
=

Lϕ
r2

ds

dt

√
Rg

(
1− r2

R2

)
=

LϕRg

r2

(
1− r2

R2

)
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Combining this with the previous expression,(
dr

dt

)2

= Rg

(
1− r2

R2

)
− r2

(
dϕ

dt

)2

= Rg

(
1− r2

R2

)
− r2

(
LϕRg

r2

(
1− r2

R2

))2

dr

dt
=

√
Rg

(
1− r2

R2

)
− L2

ϕg
2
R2

r2

(
1− r2

R2

)2

dt =
dr√

Rg
(
1− r2

R2

)
− L2

ϕR
2g2

r2

(
1− r2

R2

)2
dt =

rdr√
Rg
(
r2 − r4

R2

)
− L2

ϕR
2g2
(
1− 2r2

R2 + r4

R4

)
Now integrate, letting ζ = r2, and

ω =
1
R

√
L2
ϕg

2 +Rg

ω2R2 −Rg = L2
ϕg

2

t =
ˆ

rdr√
Rgr2

(
1− r2

R2

)
− L2

ϕR
2g2
(
1− 2r2

R2 + r4

R4

)
=

1
2

ˆ
dζ√

−L2
ϕR

2g2 +
(
Rg + 2L2

ϕg
2
)
ζ − 1

R2

(
L2
ϕg

2 + gR
)
ζ2

=
1
2

ˆ
dζ√

−ω2R4 +R3g + (2ω2R2 −Rg) ζ − ω2ζ2

The integral of this is similar to things we have done, and should yield the hypocycloid. Complete the square,

−ω2R4 +R3g +
(
2ω2R2 −Rg

)
ζ − ω2ζ2 = −ω2ζ2 +

(
2ω2R2 −Rg

)
ζ − ω2R4 +R3g

= −
(
ω2ζ2 −

(
2ω2R2 −Rg

)
ζ
)
− ω2R4 +R3g

= −
(
ω2ζ2 −

(
2ω2R2 −Rg

)
ζ +

1
4ω2

(
2ω2R2 −Rg

)2)− ω2R4 +R3g +
1

4ω2

(
2ω2R2 −Rg

)2
= −

(
ωζ − 1

2ω
(
2ω2R2 −Rg

))2

− ω2R4 +R3g +
1

4ω2

(
4ω4R4 − 4ω2R3g +R2g2

)
= −

(
ωζ − 1

2ω
(
2ω2R2 −Rg

))2

+
R2g2

4ω2

Now let A = 1
2ω

(
2ω2R2 −Rg

)
and B = Rg

2ω so that

t =
1
2

ˆ
dζ√

− (ωζ −A)2 +B2

t =
1
2ω

ˆ
dξ√

B2 − ξ2
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so that letting ξ = ωζ −A = B sinα

t =
α− α0

2ω
α = (2ωt+ α0)

ωr2 −A
B

= sin (2ωt+ α0)

r2 =
1
ω

(A+B sin (2ωt+ α0))

We show below that this describes a hypocycloid, once we use the formula to find the time of a cycle.

1.4.2 Time for a circuit

This expression for r2 is periodic, and must be maximum at t = 0, with r (t = 0) = R. This means that we
need to choose α0 = π

2 ,

r2 =
A

ω
+
B

ω
cos (2ωt)

R2 =
A+B

ω

r2 =
A

ω
+
B

ω
cos (2ωt)

R2 =
A+B

ω

=
1
2ω

(
2ω2R2 −Rg

)
+ Rg

2ω

ω

=
2ω2R2

2ω2

= R2

The solution returns to a maximum in a time 2ωt = 2π,

t =
π

ω

=
πR√

L2
ϕg

2 +Rg

Our solution is therefore:
r2 = R2 − Rg

2ω2
(1− cos (2ωt))

From this we see that the maximum depth below Earth’s surface is Rg
ω2 .

1.4.3 Equation for a hypocycloid

Now we show that the path describes a hypocycloid. From Wolfram, we have the Cartesian components,

x = (a− b) cosφ+ b cos
a− b
b

φ

y = (a− b) sinφ+ b sin
a− b
b

φ

11



where the larger radius is a and the smaller is b. Changing to polar coordinates,

r2 =
[
(a− b) cosφ+ b cos

a− b
b

φ

]2
+
[
(a− b) sinφ+ b sin

a− b
b

φ

]2
= (a− b)2 cos2 φ+ 2 (a− b) b cosφ cos

a− b
b

φ+ b2 cos2
a− b
b

φ

+ (a− b)2 sin2 φ+ 2 (a− b) b sinφ sin
a− b
b

φ+ b2 sin2 a− b
b

φ

= (a− b)2 + b2 + 2 (a− b) b
(

cosφ cos
a− b
b

φ+ sinφ sin
a− b
b

φ

)
=

[
(a− b)2 + b2

]
+ 2 (a− b) b cos

(
φ− a− b

b
φ

)
=

[
(a− b)2 + b2

]
+ 2 (a− b) b cos

(
2b− a
b

φ

)
and equating, [

(a− b)2 + b2
]

+ 2 (a− b) b cos
(
a− 2b
b

φ

)
=

1
ω

(A+B cos (2ωt))

and comparing coefficients, we have

A

ω
= (a− b)2 + b2

B

ω
= 2 (a− b) b

2ωt =
a− 2b
b

φ

Adding A and B,

R2 =
A+B

ω

= (a− b)2 + b2 + 2 (a− b) b
= ((a− b) + b)2

= a2

so the larger radius of the hypocycloid is a = R, the radius of Earth. Subtracting,

A−B
ω

=
1
2ω

(
2ω2R2 −Rg

)
− Rg

2ω

ω

= R2 − Rg

ω2

R2 − Rg

ω2
= (a− b)2 − 2 (a− b) b+ b2

= ((a− b)− b)2

= (R− 2b)2

R2 − Rg

ω2
= R2 − 4bR+ 4b2

4b2 − 4bR+
Rg

ω2
= 0

b =
4R±

√
16R2 − 16Rgω2

8
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b =
R−R

√
1− g

ω2R

2

b =
1
2
R

(
1−

√
L2
ϕg

2

L2
ϕg

2 +Rg

)
where we choose the minus sign to get the smallest value of b. This fixes the hypocycloid radii:

a = R

b =
1
2
R

(
1−

√
L2
ϕg

2

L2
ϕg

2 +Rg

)

r2 = R2 − Rg

2ω2
(1− cos (2ωt))

and the equation of the hypocycloid. Fixing the second endpoint of the motion will determine the remaing
constant, Lϕ.

1.4.4 This section still in progress

To find the final constant of motion, we use the radius, b, of the smaller circle. The particle will reach
the surface again when this circle has gone through one complete revolution. This happens when the small
circle has rolled a distance equal to its circumference, l = 2πb. Let l be the distance from New York to San
Francisco. Then we require Lϕ such that

l = 2πb

= 2π
1
2
R

(
1−

√
L2
ϕg

2

L2
ϕg

2 +Rg

)
l

πR
= 1−

√
L2
ϕg

2

L2
ϕg

2 +Rg√
L2
ϕg

2

L2
ϕg

2 +Rg
= 1− l

πR

L2
ϕg

2

L2
ϕg

2 +Rg
=

(
1− l

πR

)2

L2
ϕg

2 =
(

1− l

πR

)2

L2
ϕg

2 +
(

1− l

πR

)2

Rg[
1−

(
1− 2l

πR
+

l2

π2R2

)]
L2
ϕg

2 =
(

1− l

πR

)2

Rg

L2
ϕg

2 =

(
1− l

πR

)2
Rg

2l
πR

(
1− l

2πR

)
L2
ϕ =

πR2
(
1− l

πR

)2
2lg
(
1− l

2πR

)
Lϕ =

√
π

2lg
R
(
1− l

πR

)√
1− l

2πR

This determines the frequency, ω, to be

ω =
1
R

√
L2
ϕg

2 +Rg
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=

√√√√πg

2l

(
1− l

πR

)2(
1− l

2πR

) +
g

R
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