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Abstract

We derive both Lagrangian and Hamiltonian mechanics as gauge theories of New-
tonian mechanics. Systematic development of the distinct symmetries of dynamics and
measurement suggest that gauge theory may be motivated as a reconciliation of dy-
namics with measurement. Applying this principle to Newton’s law with the simplest
measurement theory leads to Lagrangian mechanics, while use of conformal measure-
ment theory leads to Hamiltonian mechanics.

1 Introduction

Recent progress in field theory, when applied to classical physics, reveals a previously un-
known unity between various treatments of mechanics. Historically, Newtonian mechanics,
Lagrangian mechanics and Hamiltonian mechanics evolved as distinct formulations of the
content of Newton’s second law. Here we show that Lagrangian and Hamiltonian mechanics
both arise as local gauge theories of Newton’s second law.

While this might be expected of Lagrangian mechanics, which is, after all, just the locally
coordinate invariant version of Newton’s law, achieving Hamiltonian mechanics as a gauge
theory is somewhat surprising. The reason it happens has to do with a new method of
gauging scale invariance called biconformal gauging. The study of biconformal gauging of
Newtonian mechanics serves a dual purpose. First, it sheds light on the meaning in field
theory of biconformal gauging, which has already been shown to have symplectic structure
and to lead to a satisfactory relativistic gravity theory. Second, we are now able to see a
conceptually satisfying unification of Hamiltonian mechanics with its predecessors.

Beyond these reasons for the study, we find a hint of something deeper. Not only do
many of the mathematical properties of Hamiltonian dynamics emerge necessarily, but also
we are offered a tantalizing glimpse of a new possibility – this 6-dimensional space appears
to be the proper arena for both classical and quantum physics. While the results presented
here are purely classical, we revisit this possibility in our conclusion. A full discussion of
biconformal spaces and quantum mechanics is given in [2].
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Although the present article makes only minor use of relativistic biconformal spaces, we
give a brief account of their history and properties. The story starts with conformal gauge
theories, which are notable for certain pathologies: (1) the requirement for an invariant action
in 2n dimensions to be of nth order in the curvature and/or the requirement for auxiliary fields
to write a linear action, and (2) the presence of unphysical size changes. The existence of
this alternative way to gauge the conformal group was first explored by Ivanov and Niederle
[1], who were led to an eight dimensional manifold by gauging the conformal group of a four
dimensional spacetime. They restricted the dependence on the extra four dimensions to the
minimum needed for consistency with conformal symmetry. Later, Wheeler [3], generalizing
to arbitrary dimensions, n, defined the class of biconformal spaces as the result of the 2n-dim
gauging without imposing constraints, showing it to have symplectic structure and admit
torsion free spaces consistent with general relativity and electromagnetism. Wehner and
Wheeler [4] went on to write the most general class of actions linear in the biconformal
curvatures, eliminating problems (1) and (2) above, and showing that the resulting field
equations lead to the Einstein field equations. Unlike previous conformal gauge theories,
this action takes the same form in any dimension.

In the next two sections, we make some observations regarding dynamical laws, measure-
ment theory and symmetry, then describe the global ISO(3) symmetry of Newton’s second
law and the global SO(4, 1) symmetry of Newtonian measurement theory. In Sec. 4, we
give two ways to make these different dynamical and measurement symmetries agree. After
briefly describing our method of gauging in Sec. 5, we turn to the actual gauging of New-
tonian mechanics. In Sec. 6 we show that the ISO(3) gauge theory leads, as expected, to
Lagrangian mechanics. This illustrates our method of gauging in a familiar context. Then,
in Sec. 7 we show that biconformal gauging of the SO (4, 1) symmetry leads to Hamiltonian
dynamics, including a discussion of multiple particles. In the penultimate section, we discuss
an important question of interpretation, checking that there are no unphysical size changes.
Finally, we end with a brief summary and some observations about the relationship between
biconformal spaces and quantum physics.

2 What constitutes a physical theory?

The relationship of symmetry to the form of physical laws has a long history, including
Galilean relativity, the extended discussion surrounding the transition from Newtonian to
relativistic dynamics, and the elegant theorem of Noether. Many of these ideas are synthe-
sized by Anderson [5], who makes careful distinctions between kinematical and dynamical
trajectories, their covariance and symmetry groups, and the measurements that confirm
them.

A number of the ideas discussed by Anderson concern us here, but with a slightly different
emphasis. For example, Anderson discusses the class of “kinematically possible trajectories”
whereas we refer below to the “physical arena”. Clearly, these are closely related ideas, since
a subset of paths in the arena constitutes the set of possible trajectories. As in [5], we find
that symmetry requirements place a strong restriction on that class or arena. Indeed, we
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go a step further and use group theoretic methods to derive the arena from experimentally
determined symmetries.

This brings us to another difference of emphasis, namely, our focus on the class of exper-
imentally determined symmetries. This class is determined by what we call measurement
theory. Quoting [5]:

Every physical theory attempts to associate mathematical quantities of some
kind with the elements of the physical system the theory is supposed to describe.
How one makes this association is one of the most difficult parts of physics. . . .

Measurement theory is the set of rules we use to accomplish the association between math-
ematical quantities present in a dynamical theory and numbers resulting from experiments.
We make important use of the distinction between dynamical symmetries and symmetries
implicit in these rules of measurement. Understanding the role played by each of these will
lead us to a deeper understanding of symmetry and gauge theory, and ultimately brings us
back to questions about the arena for physical theory.

To clarify the difference between dynamical symmetry and measurement symmetry, we
consider the distinction in three examples: (1) quantum mechanics, (2) classical mechanics,
and (3) special relativity.

First, consider quantum theory where the dynamics and measurement theories are quite
distinct from one another. The dynamical law of quantum mechanics is the Schrödinger
equation,

Ĥψ = ih̄
∂ψ

∂t

This equation gives the time evolution of a state, ψ, but the state has no direct physical
meaning – we require a measurement theory. For this purpose we require a norm or an inner
product on states,

〈ψ | ψ〉 =

ˆ
V

ψ∗ψ d3x

to give a measurable number. In addition, auxiliary rules for interpretation are needed. For
example, the quantum norm above is interpreted as the probability of finding the particle
characterized by the state ψ in the volume V. Additional rules govern measurement of the
full range of dynamical variables.

For our second example, we identify these same elements of Newtonian mechanics. New-
tonian mechanics is so closely tied to our intuitions about how things move that we don’t
usually separate dynamics and measurement as conceptually distinct. Still, now that we
know what we are looking for it is not difficult. The dynamical law, of course, is Newton’s
second law:

F i = m
dvi

dt

which describes the time evolution of a position vector of a particle. The measurement theory
goes back to the Pythagorean theorem – it is based on the line element or vector length in
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Euclidean space:

ds2 = dx2 + dy2 + dz2

= ηijdx
idxj

v ·w = ηijv
iwj

where

ηij =

 1
1

1


is the Euclidean metric in Cartesian coordinates. It is metric structure that provides measur-
able numbers from the position vectors, forces and other elements related by the dynamical
equation. As we shall see below, there are also further rules required to associate quantities
computed from the dynamical laws with numbers measured in the laboratory.

Finally, the separation between dynamical law and measurement theory in special rel-
ativity is quite similar to that in classical mechanics. The law of motion is just the four
dimensional version of Newton’s second law, while the measurement theory is now based on
the Minkowski line element and inner product,

ds2 = −c2dt2 + dx2 + dy2 + dz2

= ηαβdx
αdxβ

v ·w = ηαβv
αwβ

where α and β now run from 0 to 3.
Once we have both a dynamical law and a measurement theory, we can begin detailed

exploration of the physical theory. Generally, this means analyzing the nature of different
interactions and making predictions about the outcomes of experiments. For these two pur-
poses – studying interactions and making predictions – the most important tool is symmetry.
The use of symmetry for studying interactions follows from the techniques of gauge theory,
in which a dynamical law with a global symmetry is modified to be consistent with a lo-
cal symmetry of the same type. This procedure introduces new fields into the theory, and
these new fields generally describe interactions. The use of symmetry for prediction relies on
Noether’s theorem, which guarantees a conserved quantity corresponding to any continuous
symmetry. Once we have such a conserved quantity, we have an immediate prediction: the
conserved quantity will have the same value in the future that it has now.

These three properties – dynamics, measurement, and symmetry – play a role in every
meaningful physical theory. We now revisit our three examples to look at the available
symmetries.

First, we note that in quantum theory both the dynamical law and the measurement the-
ory are invariant under certain multiples of the wave function. The dynamical law is linear,
hence consistent with arbitrary multiples of solutions. However, because of the derivatives
involved in the Schrödinger equation, these multiples must be global, ψ → A0e

iϕ0ψ. In

4



contrast to this, the quantum norm is preserved by local multiples only if the multiple is a
pure phase:

ψ → eiϕ(x)ψ

Thus, the dynamical law and the measurement theory have different symmetries. Of course,
U (1) gauge theory and the usual normalization of the wave function provide one means of
reconciling this difference. The reconciliation involves two ways of modifying the symmetry of
the dynamical equation to agree with that of the measurement theory – first by restriction
(fixing A0 to normalize ψ) and second by extension (modifying the dynamical law to be
consistent with local U(1) transformations).

Gauging the U(1) phase symmetry plays an extremely important role. By the general
procedure of gauging, we replace global symmetries by local ones, and at the same time
replace the dynamical law by one consistent with the enlarged symmetry. Well-defined
techniques are available for accomplishing the required change in the dynamical laws. When
the gauging procedure is applied to the phase invariance of quantum field theory, the result
is a theory that includes electromagnetism. Thus, the gauging procedure provides a way to
systematically introduce interactions between particles, i.e., forces.

In our second example, the symmetry of Newtonian mechanics is often taken to be the
set of transformations relating inertial frames. We can arrive at this conclusion by asking
what transformations leave the dynamical equation invariant. The answer is that Newton’s
second law is invariant under any transformation of the form

xi → J i jx
j + vit+ xi0

F i → J i jF
j

where J i j is a constant, nondegenerate matrix and vi and xi0 are constant vectors. A shift
in the time coordinate and time reversal are also allowed. If we restrict J i j to be orthogonal
these comprise the Galilean transformations. However, not all of these are consistent with
Newtonian measurement theory. If we ask which of the transformations above also preserve
the Pythagorean norm, we must further restrict the transformation of xi to be homogeneous.
The combined measurement and dynamical theories are thus invariant under

xi → Oi
jx
j

F i → Oi
jF

j

t → t+ t0

While this brief argument leads us to the set of orthogonal inertial frames, it is not sys-
tematic. Rather, as we shall see, this is a conservative estimate of the symmetries that are
possible. In particular, the infinitesimal line element is invariant under general coordinate
transformations.

Finally, the relativistic version of Newton’s second law transforms covariantly under
global Lorentz transformations and global translations. In the measurement theory however,
the line element is invariant under general coordinate transformations. Reconciling this
difference by gauging, thereby making the dynamical laws invariant under local Lorentz
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transformations, provides a successful theory of gravity – general relativity. As we shall see,
gauging works well in the Newtonian case too. Although we will not look for new interactions
in the Newtonian gauge theory (such as Euclidean gravity), we will see that gauging leads
directly to both the Lagrangian and Hamiltonian formulations of mechanics.

In the next sections, we treat the symmetries of Newtonian mechanics in a more sys-
tematic way. In preparation for this, recall that in the quantum phase example, we both
restricted and extended the dynamical law to accommodate a symmetry of the measurement
theory, but arriving at the inertial frames for the Newtonian example we only restricted the
symmetry of the dynamical law. This raises a general question. When the dynamical law
and measurement theory have different symmetries, what do we take as the symmetry of
the theory? Clearly, we should demand that the dynamical equations and the measurement
theory share a common set of symmetry transformations. If there is a mismatch, we have
three choices:

1. Restrict the symmetry to a subset shared by both the dynamical laws and the mea-
surement theory.

2. Generalize the measurement theory to one with the same symmetry as the dynamical
law.

3. Generalize the dynamical equation to one with the same symmetry as the measurement
theory.

We annunciate and apply the Goldilocks Principle: Since we recognize that symmetry some-
times plays an important predictive role in specifying possible interactions, option #1 is too
small. It is unduly restrictive, and we may miss important physical content. By contrast,
the symmetry of measurement is too large for option #2 to work – inner products generally
admit a larger number of symmetries than dynamical equations. Option #3 is just right :
there are general techniques for enlarging the symmetry of a dynamical equation to match
that of a measurement theory. Indeed, this is precisely what happens in gauge theories. The
extraordinary success of gauge theories may be because they extend the dynamical laws to
agree with the maximal information permitted within a given measurement theory.

We will take the point of view that the largest possible symmetry is desirable, and will
therefore always try to write the dynamical law in a way that respects the symmetry of
our measurement theory. This leads to two novel gaugings of Newton’s law. In the next
section we look in detail at two symmetries of the second law: the usual Euclidean symmetry,
ISO(3), and the SO(4, 1) conformal symmetry of a modified version of Newton’s law. Each
of these symmetries leads to an interesting gauge theory.

3 Two symmetries of classical mechanics

In this section we first find the symmetry of Newton’s second law, then find the symmetry
of Newtonian measurement theory. We conclude the section with some observations on the
nature of these symmetries and the relationship between them.

6



3.1 Symmetry of the dynamical equation

Newton’s second law

F = m
dv

dt
(1)

has several well-known symmetries [5]. For completeness, the point symmetries leaving eq.(1)
invariant are derived in Appendix 1. The result is that two allowed coordinate systems must
be related by a constant, inhomogeneous, general linear transformation, together with a shift
(and possible time reversal) of t :

x̃m = Jmnx
n + vm0 t+ xm0 (2)

t̃ = t+ t0 (3)

F̃m = JmnF
n (4)

where Jmn is any constant, non-degenerate matrix, vm0 and xm0 are arbitrary constant vectors,
and t0 is any real constant. Notice that, setting eλ = |det (Jmn)|, Newton’s second law
transforms covariantly with respect to global rescaling of units, xm → eλxm. We can consider
scalings of the other quantities (F i and t) as well.

Eqs.(2-4) gives a 16-parameter family of transformations: nine for the independent com-
ponents of the 3×3 matrix J, three for the boosts vi0, three more for the arbitrary translation,
xm0 , and a single time translation. The collection of all of these coordinate sets constitutes
the maximal set of inertial systems. This gives us the symmetry of the dynamical law.

3.2 Symmetry of Newtonian measurement theory

Newtonian measurement theory begins with the Pythagorean theorem as embodied in the
line element and corresponding vector product

ds2 = dx2 + dy2 + dz2 = ηijdx
idxj (5)

v ·w = ηijv
iwj (6)

The line element is integrated to find lengths of curves, while the dot product lets us find
components of vectors by projecting on a set of basis vectors. The symmetry preserving
these is SO(3), the invariance group of the Euclidean metric ηij. Without introducing a
connection, this group must be global to preserve the Euclidean vector space . However,
the infinitesimal line element is preserved by general coordinate transformations, equivalent
to invariance under local rotations and translations – the local inhomogeneous orthogonal
group, ISO(3). It is this difference between global and local invariance that is addressed by
gauge theory.

Regardless of whether the symmetry is local or global, a line element or an inner product
is not a complete theory of measurement. We must be specific about how the numbers found
from the inner product relate to numbers measured in the laboratory.
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Suppose we wish to characterize the magnitude of a displacement vector, dx, separating
two particles. Using the Euclidean line element,

ds2 = ηijdx
idxj (7)

The result, to be meaningful, must still be expressed in some set of units, say, meters or
centimeters. The fact that either meters or centimeters will do may be expressed by saying
that we work with an equivalence class of metrics differing by a positive multiplier. Thus, if
we write length ds in meters as dsm, then to give the length dscm in centimeters we write

dscm = 102dsm

A quantity which is invariant under such changes of units is the ratio of any two lengths,

ds1m

ds2m

=
ds1cm

ds2cm

Transformations which leave such ratios invariant produce no measurable physical effect.
Associating the scale factor with the metric, we regard all metrics of the form

gij = e2ληij

as equivalent. The factor e2λ is called a conformal factor; two metrics which differ by a
conformal factor are conformally equivalent.

The symmetry group which preserves conformal equivalence classes of metrics is the
conformal group, locally isomorphic to SO(4, 1). The (global) conformal group is comprised
of the following transformations:

yi =


Oi

jx
j Orthogonal transformation

xi + ai Translation
eλxi Dilatation
xi+x2bi

1+2b·x+b2x2
Special conformal transformation

The first three of these are familiar symmetries. We now discuss each of the conformal
symmetries, and the relationship between the SO(4, 1) symmetry of classical measurement
theory and the ISO(3) symmetry of the dynamical law.

3.3 Relationship between the dynamical and measurement sym-
metries

Newton’s second law, the dynamical equation of classical mechanics, is invariant under global
changes of inertial frame. Newtonian measurement theory, by contrast, is invariant under
the corresponding conformal group, SO (4, 1) . For the invariance of ratios of infinitesimal
line elements the symmetry may be local. Before seeking agreement between these different
symmetries, we consider the relationship between the inertial transformations and global
SO (4, 1) . We also introduce some nomenclature relevant to dilatations and special conformal
transformations.
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3.3.1 Orthogonal transformations and translations

As expected, there are some simple relationships between the symmetries of Newton’s second
law and the conformal symmetries of the Euclidean line element. Of the global conformal
transformations, the first three – orthogonal transformations, translations, and dilatations –
all are allowed transformations to new inertial frames. We only need to restrict the global
general linear transformations Jmn of eqs.(2 ) and (4) to orthogonal, Om

n for these to agree,
while the vm0 t+ xm0 part of eq.(2) is a parameterized global translation.

3.3.2 Dilatations

For dilatations we see the invariance of Newton’s second law simply because the units on
both sides of the equation match:

[F] =
kg ·m
s2

[ma] = kg · m
s2

No matter how we scale mass, length and time, Newton’s law is preserved. Notice that the
conformal transformation of units considered here is completely different from the conformal
transformations (or renormalization group transformations) often used in quantum field the-
ory. The present transformations are applied to all dimensionful fields, and it is impossible
to imagine this simple symmetry broken. By contrast, in quantum field theory only certain
parameters are renormalized and there is no necessity for dilatation invariance.

To keep track of dilatations, it is useful to choose a uniform way to specify how quantities
scale. Classical mechanics does not have any natural fundamental constants which could be
used to convert mass and time units into units of length as we might expect from a totally
geometric theory. Such constants do exist in relativity ( c converts time to a length) and
quantum mechanics ( 1

h̄c
converts mass to (length)−1). Nonetheless, as we shall see, gauging

the conformal group expresses phase space variables in geometric units, and it is therefore
useful to think of all units as powers of length. To do this without using c or h̄ is simply
a matter of choosing an arbitrary velocity, say v0 = 1 m

sec
, and an arbitrary unit of inverse

action, for example α0 = 1 sec
kg·m2 . Using these, all MKS units are easily rendered as lengths.

The arbitrary constants v0 and α0 drop out of any physical prediction. Notice, however, that
the existence of h̄ and c in relativistic quantum theories suggests that a relativistic quantum
theory in biconformal space could be naturally geometric.

Given an arbitrary dynamical variable A with MKS units

[A] = mα (kg)β (sec)γ

we immediately have [
A (α0v0)β vγ0

]
= mα−β+γ
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Then with the units of A expressed as (length)k with k = α− β + γ, we immediately know
that under a dilatation of the metric by a factor e2λ, A will change according to

A→ ekλA

The number k is called the conformal weight of A. For example, force has weight k = −2
since we may write [

α0

v0

F

]
=

1

l2

The norm of this vector then transforms as∥∥∥∥α0

v0

F

∥∥∥∥→ e−2λ

∥∥∥∥α0

v0

F

∥∥∥∥
With this understanding, we see that Newton’s law, eq.(1), transforms covariantly under
global dilatations. With force as above and

[α0mv] =
1

l[
1

v0

d

dt

]
=

1

l

the second law has units (length)−2 throughout:[(
α0

v0

)
F

]
=

[(
1

v0

d

dt

)
(α0mv)

]
=

1

l2
(8)

Under a global dilatation, we therefore have

e−2λ

(
α0

v0

)
F = e−λ

1

v0

d

dt

(
e−λα0mv

)
= e−2λ 1

v0

d

dt
(α0mv) (9)

Newton’s law is therefore globally dilatation covariant, of conformal weight −2. Notice that
the arbitrary constants cancel.

3.3.3 Special conformal transformations

The story is very different for special conformal transformations. These surprising looking
transformations are translations in inverse coordinates. Let a single “point at infinity”,
ω, provide a one point compactification of R3. Such an added point has no measurable
consequence since the time required to reach it at any finite velocity is infinite, and any
information coming from such a point requires an infinite amount of time to reach us. Then
we may define the unique inverse to any coordinate xi as

yi = −x
i

x2
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where the origin and ω are inverse to one another (see Appendix 2). Note that inversion is
a discrete conformal transformation since

dyidyi =

(
1

x2

)2

dxidxi

Sandwiching a translation between two inversions is therefore also conformal, and gives the
general form of a special conformal transformation:

xi → −x
i

x2
→ −x

i

x2
− bi → xi + x2bi

1 + 2bixi + b2x2

The effect of a special conformal transformation on the line element is now easy to compute.
Letting yi be inverse to xi and setting

wi = yi + bi

zi = −w
i

w2

the transformation xi → zi is a special conformal transformation. Then we have

ηijdz
idzj =

(
1

w2

)2

ηijdw
idwj

=

(
1

w2

)2

ηijdy
idyj

=

(
1

w2

)2(
1

x2

)2

ηijdx
idxj

=

(
1

1− 2xibi + b2x2

)2

ηijdx
idxj

so the metric transforms according to

ηij →
(
1− 2bixi + b2x2

)−2
ηij (10)

and the combined transformation is therefore conformal. This time, however, the conformal
factor is not the same at every point. These transformations are nonetheless global be-
cause the parameters bi are constant – letting bi be an arbitrary function of position would
enormously enlarge the symmetry in a way that no longer returns a multiple of the metric.

In its usual form, Newton’s second law is not invariant under global special conformal
transformations. The derivatives involved in the acceleration do not commute with the
position dependent transformation:

e−2λ(b,x)

(
α0

v0

)
F 6= e−λ(x) 1

v0

d

dt

(
e−λ(b,x)∂x

i

∂qj
α0mv

j

)
(11)

and the dynamical law is not invariant.
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4 A consistent global symmetry for Newtonian me-

chanics

Before we can gauge any symmetry of Newtonian mechanics, we face the issue described
in the second section: our measurement theory and our dynamical equation have different
symmetries. The procedure in Newtonian mechanics is to restrict to the intersection of the
two symmetries, retaining only global translations and global orthogonal transformations,
giving the inhomogeneous orthogonal group, ISO(3). Since ISO(3) lies in the intersection
of the symmetries of the dynamical law and the measurement theory, it can be gauged
immediately to allow local SO(3) transformations. However, in keeping with our (Goldilocks)
principal of maximal symmetry, and noting that the conformal symmetry of the measurement
theory is larger than the Euclidean symmetry of the second law, we should gauge SO(4, 1).
Before we can do this, we must rewrite the second law with global conformal symmetry,
SO(4, 1). This extension is the subject of the present section. The global conformal symmetry
may then be gauged to allow local SO(3)×R+ (homothetic) transformations. In subsequent
sections we will carry out both the ISO(3) and SO(4, 1) gaugings.

4.1 The conformal connection

Our goal is now to write a form of Newton’s second law which is covariant with respect to
global conformal transformations. To begin, we have the set of global transformations

yi = Oi
jx
j

yi = xi + ai

yi = eλxi

yi =
xi + x2bi

1 + 2b · x+ b2x2
= β−1

(
xi + x2bi

)
As seen above, it is the derivatives that obstruct the full conformal symmetry (see eq.(11)).
The first three transformations already commute with ordinary partial differentiation of
tensors because they depend only on the constant parameters Oi

j, a
i and λ. After a special

conformal transformation, however, the velocity becomes a complicated function of position,
and when we compute the acceleration,

ai =
dvi

dt
=
∂yi

∂xj
d2xi

dt2
+ vk

∂

∂xk

(
∂yi

∂xj
vj
)

the result is not only a terrible mess – it is a different terrible mess than what we get from
the force (see Appendix 3). The problem is solved if we can find a new derivative operator
that commutes with global special conformal transformations.

The mass also poses an interesting problem. If we write the second law as

F =
d

dt
(mv) (12)
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we see that even “constant” scalars such as mass pick up position dependence and contribute
unwanted terms when differentiated

m → e−λ(x)m

∂im → e−λ(x)∂im− e−λ(x)m∂iλ

We can correct this problem as well, with an appropriate covariant derivative.
To find the appropriate derivation, we consider scalars and vectors, with differentiation

of higher rank tensors following by the Leibnitz rule. For scalars of conformal weight n we
require

Dks(n) = ∂ks(n) + ns(n)Σk

while for vectors of weight n we require a covariant derivative of the form,

Dkv
i
(n) = ∂kv

i
(n) + vj(n)Λ

i
jk + nvi(n)Σk

where Λi
jk and Σk remain to be determined.

Treating the scalar case first, we easily find the required transformation law for Σk.
Transforming s(n) we demand covariance,

D′ks
′
(n) =

(
Dks(n)

)′
where

s′(n) = enλs(n)

D′ks
′
(n) = e−λ∂k

(
enλs(n)

)
+ n

(
enλs(n)

)
Σ′k

and (
Dks(n)

)′
= en

′λ
(
Dks(n)

)
Since derivatives have conformal weight −1, we expect that1

n′ = n− 1

Imposing the covariance condition,

e−λ∂k
(
enλs(n)

)
+ n

(
enλs(n)

)
Σ′k = en

′λ
(
Dks(n)

)
e−λ

(
s(n)n∂kλ+ ∂ks(n)

)
+ ns(n)Σ

′
k = e−λ

(
∂ks(n) + ns(n)Σk

)
e−λs(n)n∂kλ+ ns(n)Σ

′
k = e−λns(n)Σk

or since this must hold for all s(n),

Σ′k = e−λ (Σk − ∂kλ)

1In field theory, the coordinates and therefore the covariant derivative are usually taken to have zero
weight, while dynamical fields and the metric carry the dimensional information. In Newtonian physics,
however, the coordinate of a particle is a dynamical variable, and must be assigned a weight.
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Since we assume the usual form of Newton’s law holds in some set of coordinates, Σk will be
zero for these coordinate systems. Therefore, we can take Σk to be zero until we perform a
special conformal transformation, when it becomes −ne−λ∂kλ. Notice that since λ is constant
for a dilatation, Σk remains zero if we simply change from furlongs to feet.

Since a special conformal transformation changes the metric from the flat metric ηij to
the conformal metric

gij = e2λ(x)ηij = β−2ηij (13)

where
β = 1 + 2b · x + b2x2 (14)

we need a connection consistent with a very limited set of coordinate transformations. This
just leads to a highly restricted form of the usual metric compatible Christoffel connection.
From eq.(13) we compute immediately,

Λi
jk =

1

2
gim (gmj,k + gmk,j − gjk,m)

= ηim (ηmjλ,k + ηmkλ,j − ηjkλ,m) (15)

where
λ,k = −β−1β,k

Notice that Λi
jk has conformal weight −1, and vanishes whenever bi = 0.

We can relate Σk directly to the special conformal connection Λi
jk. The trace of Λi

jk is

Λk ≡ Λi
ik = 3λ,k

so that

Σk = −λ,k
= −1

3
Λk

The full covariant derivative of a vector of conformal weight n, may therefore be written as

Dkv
i
(n) = ∂kv

i
(n) + vj(n)

(
Λi
jk −

n

3
Λkδ

i
j

)
(16)

where Λi
jk is given by eq.(15).

4.2 Covariantly constant masses

Extending the symmetry of classical mechanics to include special conformal transformations
introduces an unusual feature: even constants such as mass may appear to be position
dependent. But we are now in a position to say what it means for a scalar to be constant.
Since mass has conformal weight −1, we demand

Dkm = ∂km+
1

3
Λkm = 0

14



That is, constant mass now means covariantly constant mass.
This equation is always integrable because Λk is curl-free,

Λk,m − Λm,k = 3 (λ,km − λ,mk) = 0

Integrating,
m = m0e

−λ

Any set of N masses,
{
m(1),m(2), . . . ,m(N)

}
, in which each element satisfies the same con-

dition,

Dkm(i) = 0, i = 1, . . . , N

gives rise to an invariant spectrum of N − 1 measurable mass ratios,

MR =

{
m1

m1

= 1,
m2

m1

, . . . ,
mN

m1

}
since the conformal factor cancels out. Here we have arbitrarily chosen 1

α0v0m1
as our unit of

length.

4.3 The conformally covariant second law

We can also write Newton’s second law in a covariant way. The force is a weight −2 vector.
With the velocity transforming as a weight zero vector and the mass as a weight −1 scalar,
the time derivative of the momentum now requires a covariant derivative,

D (mvi)

Dt
=

d

dt

(
mvi

)
+mvjvkΛi

jk +
1

3
mvivkΛk

Then Newton’s law is

F i =
D

Dt

(
mvi

)
To see how this extended dynamical law transforms, we check conformal weights. The
velocity has the dimensionless form

1

v0

dxi

dt

The covariant derivative reduces this by one, so the acceleration has conformal weight −1.
The mass also has weight −1, while the force, as noted above, has weight −2. Then we have:

F̃ i =
D

Dt̃

(
m̃ṽi

)
The first term in the covariant time derivative becomes

d

dt̃

(
m̃ṽi

)
= e−λ

d

dt

(
e−λm

∂yi

∂xj
vj
)

= e−2λ ∂y
i

∂xj
d

dt

(
mvj

)
+ e−λmvj

dxk

dt

∂

∂xk

(
e−λ

∂yi

∂xj

)
15



The final term on the right exactly cancels the inhomogeneous contributions from Λi
jk and

Λk, leaving the same conformal factor and Jacobian that multiply the force:

e−2λ ∂y
i

∂xj
F j = e−2λ ∂y

i

∂xj

(
d (mvj)

dt
+mvmvkΛj

mk +
1

3
mvjvkΛk

)
The conformal factor and Jacobian cancel, so if the globally conformally covariant Newton’s
equation holds in one conformal frame, it holds in all conformal frames.

The transformation to the conformally flat metric

gij = e2ληij = β−2ηij

does not leave the curvature tensor invariant. This only makes sense – just as we have an
equivalence class of metrics, we require an equivalence class of curved spacetimes. Though
the curvature for gij is well known (see, eg. Hawking and Ellis [6]) we provide the simple
calculation in Appendix 4. Since the acceleration is the variation of the line element, force-
free motion is represented by geodesics in any of these physically equivalent geometries.

We now want to consider what happens when we gauge the symmetries associated with
classical mechanics. In the next section, we outline some basics of gauge theory. Then in suc-
ceeding sections we consider two gauge theories associated with Newtonian mechanics. First,
we gauge the Euclidean ISO(3) invariance of F i = mai, then the full SO(4, 1) conformal
symmetry of F i = D

Dt
(mvi).

Before performing these gaugings, we digress to describe the quotient group method of
gauging.

5 Gauge theory

Here we briefly outline the quotient group method of gauging a symmetry group. For internal
symmetries such as the U(1) symmetry of electromagnetism the quotient method may be
used, but there are simpler techniques. However, for gravitational or other gauge theories
that involve construction of a physical space the quotient method is necessary. The method
may be used, for example, to construct the Riemannian geometries of general relativity from
the quotient of the Poincaré group by its Lorentz subgroup. We require a similar construction
of Euclidean 3-space and a symplectic 6-space for ISO(3) and SO(4, 1), respectively.

The general case begins with a Lie group, G, and its Lie algebra

[GA, GB] = c C
AB GC

Suppose further that G has a subgroup H, such that H itself has no subgroup normal in
G. Then the quotient group G/H is a manifold with the symmetry H acting independently
at each point (technically, a fiber bundle). H is now called the isotropy subgroup. The
manifold inherits a connection from the original group, so we know how to take H-covariant
derivatives. We may then generalize both the manifold and the connection, to arrive at a
class of manifolds with curvature, still having local H symmetry. We consider here only the
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practical application of the method. Full mathematical details may be found, for example,
in [7], [8], [9].

The connection is developed as follows. Rewriting the Lie algebra in the dual basis of
Lie algebra valued 1-forms defined by 〈

GA, ω
B
〉

= δBA

we find the Maurer-Cartan equation for G,

dωC = −1

2
c C
AB ωA ∧ ωB

This is fully equivalent to the Lie algebra above, with d2 = 0 giving the Jacobi identity. Now
consider the quotient of G by H. The Maurer-Cartan equation has the same appearance,
except that now all of the connection 1-forms ωA are regarded as linear combinations of a
smaller set spanning the cotangent space of the quotient manifold.

In slightly more detail, let the Lie algebra of H have commutators

[Ha, Hb] = c c
ab Hc

then the Lie algebra for G may be written as

[Gα, Gβ] = c ρ
αβ Gρ + c a

αβ Ha

[Gα, Ha] = c ρ
αa Gρ + c b

αa Hb

[Ha, Hb] = c c
ab Hc

where α and a together span the full range of the indices A. Because H contains no normal
subgroup of G, the constants c ρ

αa are nonvanishing for some α for all a. The Maurer-Cartan
structure equations take the corresponding form

dωρ = −1

2
c ρ
αβ ωα ∧ ωβ − 1

2
c ρ
αa ωα ∧ ωa (17)

dωa = −1

2
c a
αβ

α ∧ ωβ − 1

2
c a
αb ωα ∧ ωb − 1

2
c a
bc ωb ∧ ωc (18)

and we regard the forms ωa as linearly dependent on the ωα,

ωa = ωa αω
α

The forms ωα span the spaces cotangent to the base manifold and the ωa give anH-symmetric
connection.

Of particular interest for our formulation is the fact that eq.(17) gives rise to a covariant
derivative. BecauseH is a subgroup, dωρ contains no term quadratic in ωa, and may therefore
be used to write

0 = Dωρ ≡ dωρ + ωα ∧ ω ρ
α

17



with

ω ρ
α ≡ 1

2
c ρ
αβ ωβ − 1

2
c ρ
αa ωa

This expresses the covariant constancy of the basis. As we shall see in our SO(3) gauging,
this derivative of the orthonormal frames ωρ is not only covariant with respect to local
H = SO (3) transformations, but also leads directly to a covariant derivative with respect
to general coordinate transformations when expressed in a coordinate basis. This is the
reason that general relativity may be expressed as both a local Lorentz gauge theory and a
generally coordinate invariant theory, and it is the reason that Lagrangian mechanics with
its “generalized coordinates” may also be written as a local SO(3) gauge theory.

Continuing with the general method, we introduce curvature by changing the connection.
This means that the Maurer-Cartan equations are no longer satisfied, but gain additional
terms,

dωρ = −1

2
c ρ
αβ ωα ∧ ωβ − 1

2
c ρ
αa ωα ∧ ωa + Rρ

dωa = −1

2
c a
αβ

α ∧ ωβ − 1

2
c a
αb ωα ∧ ωb − 1

2
c a
bc ωb ∧ ωc + Ra (19)

where

Ra =
1

2
Ra

αβω
α ∧ ωβ

Rρ =
1

2
Rρ

αβω
α ∧ ωβ

are 2-forms. These 2-forms are quadratic in the basis forms ωα if and only if they describe
curvature of the quotient manifold and not the entire original group. In a physical theory,
Ra and Rρ are specified by some set of field equations, and the modified connection is found
by solving eqs.(19). Since eqs.(19) describe only local structure, we may allow any manifold
consistent with the modified connection.

We illustrate with the Poincaré group. The quotient of the Poincaré group by the Lorentz
group is the manifold R4. The generators of the Poincaré Lie algebra satisfy

[Ma
b,M

c
d] = −1

2
(δcbM

a
d − ηacMbd − ηbdMac + δadM

c
b )

[Ma
b, P

c] =
1

2
(ηacPb − δcbP a)[

P a, P b
]

= 0

where the Lorentz subgroup is generated by the Ma
b. Defining dual 1-forms ωa b and ea,

the Maurer-Cartan structure equations take the form

dωa b = ωc b ∧ ωa c

dea = eb ∧ ωa b

18



and regarding the connection forms ωa b as linear combinations of the cotangent basis ea,

ωa b = ωa bce
c

the system describes a local Lorentz connection on Minkowski spacetime. The connection
forms ωa b comprise the spin connection and the set of basis forms ea is called the solder form.
By changing the connection (and the manifold, if desired), the Maurer-Cartan equations
generalize to include the Riemann curvature 2 -form, Ra

b, and the torsion 2-form, Ta,

dωa b = ωc b ∧ ωa c + Ra
b

dea = eb ∧ ωa b + Ta

If the torsion is zero, these equations describe an arbitrary Riemannian geometry. General
relativity follows by setting Ta = 0 and imposing the Einstein equation on Ra

b. The metric
may be found algebraically from the components of ea.

Our gaugings of Newtonian theory below will further illustrate the method, although
we will not generalize to curved spaces or different manifolds. As a result, the structure
equations in the form of eqs.(17, 18) describe the geometry and symmetry of our gauged
dynamical law.

6 A Euclidean gauge theory of Newtonian mechanics

We begin by gauging the usual restricted form of the second law, using the Euclidean group
as the initial global symmetry. Just as gauging the Poincaré group of flat spacetime leads
to the generally coordinate invariant arena for general relativity, the result of the Euclidean
gauging is the general coordinate invariant form of Newton’s law, i.e., Lagrangian mechanics.
While the result is not in itself surprising, it provides a new route to familiar results. More
importantly, it shows our method of construction in a familiar context, before we apply it
to conformal transformations and find an unexpected result.

The familiar form (see Appendix 5) of the Lie algebra of the Euclidean group, iso(3), is

[Ji, Jj] = ε k
ij Jk

[Ji, Pj] = ε k
ij Pk

[Pi, Pj] = 0

Using the quotient group method, we choose so(3) as the isotropy subgroup. Then introduc-
ing the Lie algebra valued 1-forms ωi dual to Ji and ei dual to Pi we write the Maurer-Cartan
structure equations

dωm = −1

2
c m
ij ωiωj = −1

2
ε m
ij ωiωj

dem = −c m
ij ωiej = −ε m

ij ωiej

19



Defining

ωmn ≡ ωkε mn
k

ωk =
1

2
εk mnω

mn

these take a form similiar to the structure equations for general relativity,

dωmn = ωmkω n
k (20)

dem = ekω m
k (21)

with ωmn the spin connection and em the dreibein. These equations are equivalent to the
commutation relations of the Lie algebra, with the Jacobi identity following as the integra-
bility condition d2 = 0, i.e.,

d2ωmn = d
(
ωmjω n

j

)
= dωmjω n

j − ωmjdω n
j ≡ 0

d2em = d
(
ωm ke

k
)

= dωm ke
k − ωm kde

k ≡ 0

Eqs.(20) and (21) define a connection on a three dimensional (flat) manifold spanned by the
three 1-forms em. We take ωmn to be a linear combination of the em. This completes the
basic construction.

The equations admit an immediate solution because the spin connection, ωmn is in invo-
lution. The 6-dimensional group manifold therefore admits coordinates yi such that

ωmn = wmn αdy
α

Here we use Latin indices for indices in the orthonormal basis em and Greek indices for the
coordinate basis. By the Frobenius theorem, there are submanifolds given by yα = const.
On these 3-dimensional submanifolds, ωmn = 0 and therefore

dem = ωm ke
k = 0

with solution
em = δmα dx

α

for an additional three coordinate functions xα. This solution gives Cartesian coordinates
on the yα = const. submanifolds. Identifying these manifolds as copies of our Euclidean
3-space, we are now free to perform an arbitrary rotation at each point.

Performing such local rotations on orthonormal frames leads us to general coordinate
systems. When we do this, the spin connection ωmn takes the pure gauge form

ωmn = −
(
dOm

j

)
Ōjn

where Om
j (x) is a local orthogonal transformation and Ōjn (x) its inverse. Then ei provides

a general orthonormal frame field in the locally rotated basis,

ei = e i
α dxα
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The coefficients e i
α (x) may be determined once we know Om

j (x) .
The second Maurer-Cartan equation gives us a covariant derivative as follows. Expand

any 1-form in the orthonormal basis,
v = vie

i

Then we define the covariant exterior derivative via

(Dvi) e
i = dv

= d
(
vie

i
)

= dvie
i + vide

i

=
(
dvk − viω i

k

)
ek

Similar use of the product rule gives the covariant derivative of higher rank tensors. This
local SO (3)-covariant derivative of forms in an orthonormal basis is equivalent to a general
coordinate covariant derivative when expressed in terms of a coordinate basis. We see this
as follows.

Rewriting eq.(21) in the form

dei + ekωi k = 0

we expand in an arbitrary coordinate basis, to find

dxα ∧ dxβ
(
∂αe

i
β + e k

α ωi kβ

)
= 0

The term in parentheses must therefore be symmetric:

∂αe
i

β + e k
α ωikβ ≡ Γiαβ = Γiβα

Writing
Γiβα = e i

µ Γµβα

we define the covariant constancy of the basis coefficients,

Dαe
i

β ≡ ∂αe
i

β + e k
α ωikβ − e i

µ Γµβα = 0 (22)

Eq.(22) relates the SO(3)-covariant spin connection for orthonormal frames to the Christoffel
connection for general coordinate transformations. Next, note that the covariant derivative
of the orthogonal metric η = diag(1, 1, 1) is zero,

Dαηab = ∂αηab − ηcbca − ηacωcb
= −ηcbωca − ηacωcb
= 0

where the last step follows by the antisymmetry of the SO(3) connection. Since the inverse
orthogonal metric ηab is given by the linear inner product of two basis 1-forms, we have

ηab = ea · eb

= e a
α e b

β dxα · dxβ
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Let the inverse to e a
α be written as e α

a , and write the inverse coordinate metric as the
inner product of coordinate basis forms

gαβ = dxα · dxβ

Then we have the relationship between the coordinate and orthonormal forms of the inverse
metric and metric,

gαβ = e α
a e β

b ηab

gαβ = ηabe
a

α e b
β

The covariant constancy of the coordinate metric follows immediately,

Dαgµν = Dα

(
ηabe

a
µ e b

ν

)
= 0

This is inverted in the usual way to give the Christoffel connection for SO(3),

Γαµν =
1

2
gαβ (gβµ,ν + gβν,µ − gµν,β) (23)

Thus, our solution for the solder form and spin connection (ea, ωa b) lead us to the Chrostoffel
connection, explicitly establishing the relationship between diffeomorphism invariance and
local SO (3) invariance. The Christoffel connection may also be found directly from eq.(22)
using gµν = ηabe

a
µ e b

ν . Thus, there is little practical difference between the ability to
perform local rotations on an orthonormal frame field, and the ability to perform arbitrary
transformations of coordinates. It is just a matter of putting the emphasis on the coordinates
or on the basis vectors (see [10]). It is this equivalence that makes the SO(3) gauge theory
equivalent to the use of “generalized coordinates” in Lagrangian mechanics.

Since Newtonian 3-space is Euclidean and we have not generalized to curved spaces, the
metric is always just a diffeomorphism away from orthonormal, that is,

e a
α = J a

α =
∂ya

∂xα

gαβ = ηabe
a

α e b
β = ηab

∂ya

∂xα
∂yb

∂xβ
(24)

and the connection takes the simple form

Γαµν = −∂x
α

∂ya
∂2ya

∂xµ∂xν
(25)

which has, of course, vanishing curvature. Notice that (ea, ωa c) or equivalently,
(
gαβ,Γ

α
µν

)
,

here describe a much larger class of coordinate transformations than the global conformal
connection Λi

jk of Sec. 4. The connection of eq.(25) gives a derivative which is covariant for
any coordinate transformation.

This completes our description of Euclidean 3-space in local SO(3) frames or general
coordinates. We now generalize Newton’s second law to be consistent with this enhanced
symmetry.
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6.1 Generally covariant form of Newton’s law

The generalization of Newton’s second law to a locally SO(3) covariant form of mechanics
is now immediate. We need only replace the time derivative by a directional covariant
derivative,

Fα = vβDβ (mvα)

where
Dβv

α ≡ ∂βv
α + vµΓαµβ (26)

and Γαµβ given by eq.(25 ). This is the principal result of the the SO(3) gauging.
If Fα is curl free, then it may be written as minus the contravariant form of the gradient

of a position-dependent potential, V (xα) ,

Fα = −gaβ ∂V
∂xβ

and the covariant second law may be written as

vβ∂β (mvα) +mvµvβΓαµβ = −gaβ ∂V
∂xβ

This result agrees with that of [5].
Continuing, we expand the connection in terms of the metric,

vβ∂β (mvα) +mvµvβΓαµβ = −gaβ ∂V
∂xβ

vβ∂β (mvα) +
1

2
mvµvβgαν (gνµ,β + gνβ,µ − gµβ,ν) = −gaβ ∂V

∂xβ

gανgνµv
β∂β (mvµ) +mvµvβgανgνµ,β −

1

2
mvµvβgανgµβ,ν = −gaβ ∂V

∂xβ

vβ∂β (mgνµv
µ)− 1

2
vµvβgµβ,ν = − ∂V

∂xν

vβ∂β (mgνµv
µ) =

∂

∂xν

(
1

2
vµvβgµβ − V

)
Defining the kinetic energy

T =
1

2
mgαβv

αvβ

and recognizing that
∂T

∂vν
= mgνµv

µ

the diffeomorphism invariant form of the second law may be written as

d

dt

(
∂T

∂vν

)
=

∂

∂xν
(T − V )
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Finally, since the potential is independent of the velocity, we may set

L = T − V

to get
d

dt

(
∂L

∂vα

)
− ∂L

∂xα
= 0

This, of course, is the Euler-Lagrange equation. This argument provides a derivation of the
usual form of the classical Lagrangian,

L = T − V =
1

2
mgjkv

jvk − V

from the gauge principle, and shows that the covariant form of the law is the extremum of
a functional,

S =

ˆ
(T − V ) dt

Thus, ISO(3) gauge theory has led us to Lagrangian mechanics. The derivation of the
form of the classical Lagrangian and its variational character as consequences of gauge theory
are the central results of this section. These results are expected since Lagrangian mechanics
was formulated in order to allow “generalized coordinates”, i.e., diffeomorphism covariant
equations of motion.

6.2 Multiple particles

We now generalize these results to multiple particles. In the standard treatment, the La-
grangian for many particles is the sum of the individual single-particle kinetic terms together
with the multiparticle potential. We show that the same result follows from gauge theory.
We conclude with an amusing proof regarding the additivity of the multiparticle action.

6.2.1 Generalization to multiple particles

To treat the case of multiple particles, we may start again with Newton’s second law, but this
time we assume there are N particles. The forces on the various particles arise as the gradient

of a potential V which may depend on the positions of allN particles, V = V
(
xα(1), . . . , x

β
(N)

)
.

Therefore, with A = 1, . . . , N, the forces may be written covariantly as

F a
(A) = −gab ∂V

∂xb(A)

As we showed above, the acceleration of the Ath particle is written covariantly as

aα(A) = vβ(A)∂βv
α
(A) + vµ(A)v

β
(A)Γ

α
µβ
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where Γαµβ is evaluated at the position of the Ath particle. Therefore,

vβ(A)∂βm(A)v
α
(A) +m(A)v

µ
(A)v

β
(A)Γ

α
µβ

(
xν(A)

)
= −gab ∂V

∂xb(A)

The argument proceeds exactly as before with the result that for each particle, the diffeo-
morphism invariant form of the second law may be written as

d

dt

(
∂
(
T(A) − V

)
∂vν(A)

)
=

∂

∂xνA

(
T(A) − V

)
where

T(A) =
1

2
m(A)gαβ

(
xν(A)

)
vα(A)v

β
(A)

These equations of motion are the variational equations for the action functional

S =

ˆ ( N∑
A=1

T(A) − V (x1, . . . , xN)

)
dt

where each coordinate vector xα(A) is varied independently.

6.2.2 Additivity of the multiparticle action

We conclude our discussion of SO (3) gauging with a theorem. The multiparticle action
includes a sum over the separate kiinetic energies of the particles, but there is only a single
potential. This means that the actions for distinct particles are not additive. Is it possible
to reformulate our variational principle as a sum over single particle actions?

We answer this question in the affirmative. First, we see that the requisite potentials exist
as follows. Suppose we want an appropriate potential for particle 1. We can, in principle,
solve the equations of motion for the remaining N − 1 particles, giving functions xα(A) (t) for
A = 2, . . . , N. Substituting these functions into the action we have

S =

ˆ
dt

(
m1

2
gmn (x1)

dxm1
dt

dxn1
dt

+
N∑
A=2

mA

2
gmn (xA (t))

dxmA (t)

dt

dxnA (t)

dt
− V (x1, t)

)

Since the middle term is now a function of t alone, it does not contribute to the equation of
motion for xα1 so S is equivalent to

S1 =

ˆ
dt (T1 − V1 (x1, t))

where V1 = V (x1, t) = V1 (x1, x2 (t) , . . . , xN (t) , t) . The potential now only depends on x1

and time. In the same way we can find separate time-dependent potentials, VA (xA, t) , for
each particle.
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The N -particle action may now be written as the sum

S ′ =
∑
A

ˆ
dt (TA − VA (xA, t))

Conversely, suppose we are given a set of separate Lagrangians,

LA = TA − VA (xA, t)

Then, with the usual Newtonian assumption of impenetrability, we observe that the world
lines of the N particles are non-intersecting. Therefore, at any time t there exist disjoint
open neighborhoods, NA, such that NA contains the Ath particle and such that the closure
of the sets NA remain disjoint,

N̄A ∩ N̄B = φ

Now extend each NA to an open set UA such that

1. The sets UA form an open cover

2. Each set NA intersects exactly one UA,

UA ∩NB = δABNB

Finally, define a partition of unity on the open cover UA, choosing each fA such that

fA (NA) = 1

This condition is clearly compatible with the requirement that fA be of compact support on
UA. We may now define

V
(
xα1 , . . . , x

β
N , t
)

=
∑
A

fAVA (xαA, t)

This gives the required single potential. We conclude that, for ideal Newtonian particles,
the action may be written as a sum of single particle actions if and only if it can be written
using a single potential dependent on all of the coordinates and time.

We may strengthen this result by considering a second question. Noting that a sin-

gle, time-independent potential V
(
xα1 , . . . , x

β
2

)
will generally give rise to a set of time-

dependent individual potentials, VA (xaA, t) , we ask the converse: When does a given set of
time-dependent potentials VA (xαA, t) give rise to a time-independent single potential? For
motions with bounded velocity (i.e., essentially all classical physical motions) the answer is
surprisingly simple. Let the x-component of the velocity of particle 1 be bounded below by
v0. Then a Galilean boost in the x-direction by −2v0 insures that the x-component of xα1
is a monotonic function of t. Inverting this function, we may replace the time dependence

by additional dependence on x1
1, achieving the desired result, V

(
xα1 , . . . , x

β
N , t (xaA)

)
. We

summarize these results with:
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Theorem For ideal Newtonian particles, the action may be written as a sum of single par-
ticle actions if and only if it can be written using a single, time-independent potential,

V
(
xα1 , . . . , x

β
N

)
.

In the next Section we our construction of the Hamiltonian formulation automatically makes
it additive.

7 A conformal gauge theory of Newtonian mechanics

Now we gauge the full O(4, 1) symmetry of our globally conformal form of Newton’s law.
The Lie algebra of the conformal group (see Appendix 5) is:

[Ma
b,M

c
d] = δcbM

a
d − ηcaηbeM e

d − ηbdMac + δadM
c

b

[Ma
b, Pc] = ηbcη

aePe − δacPb
[Ma

b, K
c] = δcbK

a − ηcaηbeKe

[Pb, Kd] = −ηbeM e
d − ηbdD

[D,Pa] = −Pa
[D,Ka] = Ka (27)

whereMa
b, Pa, Ka andD generate rotations, translations, special conformal transformations

and dilatations, respectively.
As before, we write the Lie algebra in terms of the dual basis of 1-forms, setting

〈Ma
b, ω

c
d〉 = δcbδ

a
d − ηcaηbe

〈Pb, ea〉 = δab
〈Ka, fb〉 = δab
〈D,W〉 = 1

The Maurer-Cartan structure equations are therefore

dωa b = ωc b
a

c + fbe
a − ηacηbdfced (28)

dea = ecωa c + Wea (29)

dfa = ωc afc + faW (30)

dW = eafa (31)

So far, these structure equations look the same regardless of how the group is gauged.
However, there are different ways to proceed from here because there is more than one
sensible subgroup. In principle, we may take the quotient of the conformal group by any
subgroup, as long as that subgroup contains no normal subgroup of the conformal group.
However, we certainly want the final result to permit local rotations and local dilatations.
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This which restricts consideration to subgroups generated by subsets of {Ma
b, Pa, Ka, D}

and not, for example, collections such as {P2, K2, D}. Looking at the Lie algebra, we see only
three rotationally and dilatationally covariant subgroups satisfying this condition, namely,
those generated by one of the following three sets of generators

{Ma
b, Pa, D}

{Ma
b, Ka, D}

{Ma
b, D}

The first two generate isomorphic subgroups, so there are really only two independent choices,
{Ma

b, Ka, D} and {Ma
b, D}. The most natural choice is the first because it results once

again in a gauge theory of a 3-dim Euclidean space. However, it leads only to a conformally
flat 3-geometry with no new features. The final possibility, {Ma

b, D} , is called biconformal
gauging. It turns out to be interesting.

Therefore, we perform the biconformal gauging, choosing the homogeneous Weyl group
generated by {Ma

b, D} for the local symmetry. This means that the forms ea and fa are
independent, spanning a 6-dimensional sub-manifold of the conformal group manifold.

The solution of the structure equations (see [3]), eqs.(28-31) may be put in the form:

ωa b = (δadδ
c
b − ηacηdb) ycdxd

W = −yadxa

ea = dxa

fa = dya −
(
yayb −

1

2
y2ηab

)
dxb (32)

Notice that if we set ya = 0, these forms reduce to

ωa b = 0

W = 0

ea = dxa

fa = 0

which defines a 3-dim space Euclidean space with orthonormal basis ea = dxa. If, on the
other hand, we hold xa = 0 (or any constant), then

ωa b = 0

W = 0

ea = 0

fa = dya

and we have a Euclidean 3-space with orthonormal basis fa.
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We can see that eafa is a symplectic form because ea and fa are independent, making
this 2-form non-degenerate, while the structure equation, eq.(31),

dW = eafa (33)

shows that eafa is closed, d (eafa) = d2W = 0. This is also evident from the solution, where

eafa = dxa
(
dya −

(
yayb −

1

2
y2ηab

)
dxb
)

= dxadya

is in the canonical form guaranteed by the Darboux theorem ([11],[12]). Because of this
symplectic form we are justified in identifying the solution as a relative of phase space.

The symplectic form allows us to define canonical brackets, analogous to Poisson brackets,
which in this context we call biconformal brackets. Then the pair (xα, yα) satisfies the
fundamental biconformal bracket relationship

{xα, yβ} = δαβ . (34)

It is straightforward to show that a transformation is canonical if and only if it preserves
this bracket.

From eq.(34) it follows that yβ is the conjugate variable to the position coordinate xα and
in mechanical units we may set yα = α0pα,where pα is momentum and yβ has units of inverse
length. As discussed in Sec.3, α0 may be any constant with the appropriate dimensions.

7.1 Single particle Hamiltonian dynamics

Since we are in a 6-dimensional symplectic space, we cannot simply write Newton’s law as
before. Moreover, with the interpretation as a phase space, we do not expect physical paths
to be geodesics. Therefore, we postulate an action. Noting that the geometry contains a
new one-form, the Weyl vector, it is reasonable to examine what paths are determined by
its extremals. Therefore, we consider the action

S = −
ˆ

W

Variation of S leads to the equation for a straight line. However, the results are more
interesting if we start with the relativistic conformal group, SO (4, 2) , then take an explicit
Newtonian limit.

We gauge the Lorentz-conformal group, SO (4, 2) just as we gauged SO (4, 1) . The Lie
algebra, structure equations and the solution for the connection (eqs.27-32) are unchanged
except for the range of the indices, A,B = 0, 1, 2, 3. In particular, the Weyl vector takes the
form

W = −y0dt− ymdxm
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where we identify xA = (t, xa) with spacetime coordinates. The action now takes the form

S =

ˆ
(y0dt+ ymdx

m)

=

ˆ (
y0 + ym

dxm

dt

)
dt

= α0

ˆ
c

(
p0 + pm

dxm

dt

)
dt

Before varying S to find the equations of motion, we restrict to the Newtonian case.
Specifically, we require that time, t, be universal. As a result, we cannot vary t in the action.
Moreover, variation of the fundamental biconformal bracket for t implies

0 = δ {t, p0}
= {δt, p0}+ {t, δp0}

=
∂ (δp0)

∂p0

. (35)

Thus, the most general allowed variation δp0 of p0 depends only on the remaining coordinates,
δp0 = −δH (yi, x

j, t). Since variation may take us to any allowed value of p0, p0 itself is
dependent on the other seven coordinates,

p0 = −H (ya, x
a, t)

Thus, the existence of a Hamiltonian may be viewed a consequence of the existence of
universal time, and is intimately related to relativistic mechanics.

Varying the action now leads to

0 = δS

= α0

ˆ
c

(
−H + pm

dxm

dt

)
dt

= α0

ˆ (
−∂H
∂xi

δxi − ∂H

∂pi
δpi + δpi

dxi

dt
− dpi

dt
δxi
)
dt

which immediately gives us Hamilton’s equations for the classical paths.

dpi
dt

= −∂H
∂xi

(36)

dxi

dt
=

∂H

∂pi
(37)

We immediately recognize H as the system Hamiltonian. Notice that the arbitrary unit
choice α0 is absent from the equations of motion.

As expected, the symmetry of these equations includes local rotations and local dilata-
tions, but in fact is larger since, as we know, local symplectic transformations preserve
Hamilton’s equations.
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7.2 Multiparticle mechanics

Generalizing to the case of N particles, the action becomes a functional of N distinct curves,
Cn, n = 1, . . . , N

S = −
N∑
n=1

ˆ
Cn

W (38)

As for the single particle case, the invariance of time constrains p0. However, since W =
−yαdxα is to be evaluated on N different curves, there will be N distinct coordinates xα(n)

and momenta, p
(n)
α . Therefore, we have

0 = δ
{
x0

(m), p
(n)
0

}
=

{
δx0

(m), p
(n)
0

}
+
{
x0

(m), δp
(n)
0

}
=

∂
(
δp

(n)
0

)
∂p

(k)
0

∂x0
(m)

∂x0
(k)

(39)

Now, since time is universal in non-relativistic physics, we may set x0
(m) = t for all m.

Therefore,
∂x0

(m)

∂x0
(k)

= 1 and we have

∂
(
δp

(n)
0

)
∂p

(k)
0

= 0 (40)

which implies that each p
(n)
0 is a function of the 6N spatial components only,

p
(n)
0 = −H(n)

(
xi(1), . . . , x

i
(N), p

(1)
i , . . . , p

(N)
i

)
This means that each p

(n)
0 is sufficiently general to provide a generic Hamiltonian, so that

the collective Hamiltonian, defined as

H =
N∑
n=1

H(n)

(
xi(1), . . . , x

i
(N), p

(1)
i , . . . , p

(N)
i

)
,

is also obviously generic. Notice that this procedure is invertible, since we may always divide
a given collective Hamiltonian into N identical parts, H = 1

N

∑
H, setting H(n) = H.

Returning to the action again use the assumption of universal time, dt(n) = dt, to write

S = −
N∑
n=1

ˆ
Cn

W

= α0

ˆ N∑
n=1

(
p

(n)
0 dt(n) + p

(n)
i dxi(n)

)
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= α0

ˆ N∑
n=1

(
p

(n)
0 + p

(n)
i

dxi(n)

dt

)
dt

= α0

ˆ
Cn

(
N∑
n=1

p
(n)
i

dxi(n)

dt
−H

)
dt

wherein we recognize the usual expression for the Lagrangian in terms of the Hamiltonian,

L =
N∑
n=1

p
(n)
i

dxi(n)

dt
−H

Notice, however, that we have now derived both the Hamiltonian and the Lagrangian from
the Weyl vector, as well as the usual Legendre transform between them.

The introduction of multiple biconformal coordinates has consequences for the biconfor-
mal structure equations as well. Though mathematically equivalent, there is a conceptual
difference between the two sides of

N∑
n=1

ˆ
Cn

W = −α0

ˆ N∑
n=1

(
pn0 + pni

dxin
dt

)
dt

On the left, we sum N integrals, but on the right we may interpret the sum as giving a new
gauge vector,

W = −α0

N∑
i=1

pnαdx
α
n = −

N∑
i=1

ynαdx
α
n

With the latter interpretation the exterior derivative of W is

dW = −
N∑
i=1

dynαdx
α
n

and the structure equation
dW = eafa

must be modified to include the proper number of degrees of freedom. We therefore modify
the structure equation to

dW = ea(n)f
(n)
a

The remaining structure equations are satisfied by simply making the same replacement,

(ea, fa) →
(
ea(n), f

(n)
a

)
. Thus we see that the introduction of multiple particles leads to

multiple copies of biconformal space, in precise correspondence to the introduction of a 6N -
dim (or 8N -dim) phase space in multiparticle Hamiltonian dynamics. These observations
suggest that the symplectic structure encountered in dynamical systems has its origin in the
symmetry of Newtonian measurement theory.

Finally, we note the simple relationship between the original 6-dim biconformal space
and the 6N -dim multiparticle space. Consider the cotangent space of the biconformal space
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at the location of any one of the N particles. This cotangent space is a copy of the flat
biconformal space. If we build the direct product of these tangent spaces at the positions
of all N particles, we arrive at a space which is locally isomorphic to the 6N -dim phase
space. Thus, we see that the phase space is in one to one correspondence with a subspace
of the cotangent bundle of the biconformal space. The difference between the motion in
phase space of a single, 6N -dimensional vector and the motion in biconformal space of N,
6-dimensional vectors is just a matter of point of view.

One advantage of the 6-dim point of view is that we may regard biconformal spaces as
fundamental in the same sense as configuration spaces, rather than derived from dynamics
the way that phase spaces are. This means that in principle, dynamical systems could de-
pend on position and momentum variables independently. While this is not so important
for classical solutions, which separate into a pair of 3-dimensional submanifolds (configu-
ration/momentum), or for relativistic solutions which similarly separate (spacetime/energy-
momentum) the extended dependence on both position and momentum could yield important
insights into quantum mechanics.

7.3 Is size change measurable?

While we won’t systematically introduce curvature, there is one important consequence of
dilatational curvature that we must examine. A full examination of the field equations for
curved biconformal space ([3],[4]) shows that the dilatational curvature is proportional (but
not equal) to the curl of the Weyl vector. When this curvature is nonzero, the relative sizes
of physical objects may change. Specifically, suppose two initially identical objects move
along paths forming the boundary to a surface. If the integral of the dilatational curvature
over that surface does not vanish the two objects will no longer have identical sizes. This
result is inconsistent with macroscopic physics. However, we now show that the result never
occurs classically. A similar result has been shown for Weyl geometries [13].

If we fix a gauge, the change in any length dimension, l, along any path, C, is given by
the integral of the Weyl vector along that path:

dl = lWAdx
A

l = l0 exp

(ˆ
C

WAdx
A

)
It is this integral that we want to evaluate for the special case of classical paths. Notice that
this factor is gauge dependent, but if we compare two lengths which follow different paths
with common endpoints, the ratio of their lengths changes in a gauge independent way:

l1
l2

=
l10

l20

exp

(˛
C1−C2

WAdx
A

)
This dilatation invariant result represents measurable relative size change when the expo-
nential factor differs from unity.
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We now show that such measurable size changes never occur classically. Since l1 and l2
must both evolve according to the classical equations of motion, the paths C1 = C1 (xm1 , p

1
n)

and C2 = C2 (xm2 , p
2
n) are both solutions to Hamilton’s equations. From the expression for

the action we haveˆ
C

W =

ˆ
C

WAdx
A

= −α0

ˆ xf

xi

(
H (xn (t) , pm (t))− pk (t)

dxk (t)

dt

)
dt

where xn (t) and pm (t) describe any solution to Hamilton’s equations. This is just the change
in Hamilton’s principal function between the endpoints (see Appendix 6),

S (xf , tf )− S (xi, ti)

Any classical solution evolving from (xi, ti) to (xf , tf ) gives this same result, so we always
have ˛

C1−C2

WAdx
A = 0

and no measurable size change.
We have shown that the ratio of magnitudes of any two quantities evolving between the

same initial and final points will remain constant. We can do better than this, however.
Hamilton’s principal function gives us a way to define a gauge in which magnitudes evolved
along classical paths remain constant. Since the Weyl vector is a gauge vector, it changes
inhomogeneously according to

W′ = W + dφ

when we choose a new gauge φ. If we choose φ = S (x, t) then the dilatation factor for any
length is

exp

(ˆ
W′
)

= exp

(ˆ
W +

ˆ
dS

)
= exp

(ˆ
W + S

)
But
´
W is equal to −S and the factor is unity. In this gauge, classical objects retain their

magnitudes.

8 Conclusions

We have shown the following

1. The SO(3) gauge theory of Newton’s second law is Lagrangian mechanics

2. The SO(4, 1) gauge theory of Newton’s second law is Hamiltonian mechanics.
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These results provide a new unification of classical mechanics using the tools of gauge theory.
We note several further insights.
First, by identifying the symmetries of a theory’s dynamical law from the symmetry of

its measurement theory, we gain new insight into the meaning of gauge theory. Generally
speaking, dynamical laws will have global symmetries while the inner products required for
measurement will have local symmetries. Gauging may be viewed as enlarging the symmetry
of the dynamical law to match the symmetry of measurement, thereby maintaining closer
contact with what is, in fact, measurable.

Second, we strengthen our confidence and understanding of the interpretation of relativis-
tic biconformal spaces as relatives of phase space. The fact that the same gauging applied
to classical physics yields the well-known and powerful formalism of Hamiltonian dynamics
suggests that the higher symmetry of biconformal gravity theories may in time lead to new
insights or more powerful solution techniques.

Finally, it is possible that the 6-dimensional symplectic space of SO(4, 1) gauge theory
represents a deep insight. Like Hamiltonian dynamics, quantum mechanics requires both
position and momentum variables for its formulation – without both, the theory makes no
sense. If we take this seriously, perhaps we should look closely at biconformal space as
the fundamental arena for physics. Rather than regarding phase space as a convenience
for calculation, perhaps there is a 6-dim (or, relativistically, 8-dim) space upon which we
move and make our measurements. If this conjecture is correct, it will be interesting to
see the form taken by quantum mechanics or quantum field theory when formulated on a
biconformal manifold [2].

The proof of Sec. 8 is encouraging in this regard, for not only do classical paths show no
dilatation, but a converse statement holds as well: non-classical paths generically do show
dilatation. Since quantum systems may be regarded as sampling all paths (as in a path
integral), it may be possible to regard quantum non-integrability of phases as related to
non-integrable size change. There is a good reason to think that this correspondence occurs:
the covering group of SO (4, 2) admits complex representations in which the Weyl vector
is pure imaginary. This does not alter the classical results, but it changes the dilatations
to phase transformations. If this is the case, then the evolution of sizes in biconformal
spaces, when expressed in the usual classical variables, gives unitary evolution just as in
quantum physics. The picture here is much like the familiar treatment of quantum systems
as thermodynamic systems by replacing time by a complex temperature parameter, except
it is now the energy-momentum vector that is replaced by a complex coordinate in a higher
dimensional space. A full examination of these questions takes us too far afield to pursue
here, but they are under current investigation.
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Appendices

Appendix 1: Point transformations of Newton’s second law
Here we derive the point transformations leaving the second law invariant, assuming the

force to transform as a vector.
Consider a general coordinate transformation in which we replace the Cartesian coordi-

nates, xi, as well as the time parameter, by

qi = qi (x, t)

τ = τ (x, t)

We have four functions, each of four variables. This functions must be invertible, so we may
also write

xi = xi (q, τ)

t = t (τ)

The limitation on covariance comes from the acceleration. First, the velocity is given by

vi =
dxi (q, τ)

dt

=
dτ

dt

(
∂xi

∂qj
dqj

dτ
+
∂xi

∂τ

)
where we use the usual summation convention on repeated indices, e.g.,

3∑
j=1

∂xi

∂qj
dqj

dτ
=
∂xi

∂qj
dqj

dτ

The acceleration is

ai =
dvi (q, τ)

dt

=
dτ

dt

d

dτ

(
dτ

dt

(
∂xi

∂qj
dqj

dτ
+
∂xi

∂τ

))
=

(
dτ

dt

)2(
∂xi

∂qj
d2qj

dτ 2

)
+
d2τ

dt2

(
∂xi

∂qj
dqj

dτ
+
∂xi

∂τ

)
+

(
dτ

dt

)2
dqk

dτ

(
∂2xi

∂qk∂qj
dqj

dτ
+

∂2xi

∂qk∂τ

)
+

(
dτ

dt

)2(
∂2xi

∂τ∂qj
dqj

dτ
+
∂2xi

∂τ 2

)
The first term is proportional to the acceleration of qi, but the remaining terms are not.
Since we assume that force is a vector, it changes according to:

F i (x, t) =
∂xi

∂qj
F j (q, τ) (41)
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where ∂xi

∂qj
is the Jacobian matrix of the coordinate transformation. Substituting into the

equation of motion, we have

1

m

∂xi

∂qj
F j (q, τ) =

(
dτ

dt

)2(
∂xi

∂qj
d2qj

dτ 2

)
+
d2τ

dt2

(
∂xi

∂qj
dqj

dτ
+
∂xi

∂τ

)
+

(
dτ

dt

)2
dqk

dτ

(
∂2xi

∂qk∂qj
dqj

dτ
+

∂2xi

∂qk∂τ

)
+

(
dτ

dt

)2(
∂2xi

∂τ∂qj
dqj

dτ
+
∂2xi

∂τ 2

)
(42)

Newton’s second law holds in the new coordinate system,

Fm (q, τ) = m
d2qm

dτ 2

if and only if:

1 =

(
dτ

dt

)2

0 =
d2τ

dt2

(
∂xi

∂qj
dqj

dτ
+
∂xi

∂τ

)
+

(
dτ

dt

)2
dqk

dτ

(
∂2xi

∂qk∂qj
dqj

dτ
+

∂2xi

∂qk∂τ

)
+

(
dτ

dt

)2(
∂2xi

∂τ∂qj
dqj

dτ
+
∂2xi

∂τ 2

)
(43)

From the first, we have
τ = t+ t0

together with the possibility of time reversal,

τ = −t+ t0

for the time parameter. Using this result to simplify the second (including d2τ
dt2

= 0),

0 =
∂2xi

∂qk∂qj
dqj

dτ

dqk

dτ

+2
∂2xi

∂τ∂qj
dqj

dτ
+
∂2xi

∂τ 2
(44)
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Now, since the components of the velocity, dqk

dτ
, are independent we get three equations,

0 =
∂2xi

∂qk∂qj
(45)

0 =
∂2xi

∂qk∂τ
(46)

0 =
∂2xi

∂τ 2
(47)

Integrating,

0 =
∂2xi

∂τ 2
⇒ xi = xi0 (qm) + vi0 (qm) τ (48)

0 =
∂2xi

∂qk∂τ
⇒ 0 =

∂vi0
∂qk
⇒ vi0 = const. (49)

The remaining equation implies that the Jacobian matrix is constant,

∂xm

∂qj
=
∂xm0
∂qj

= Jmj = const. (50)

Integrating, the coordinates must be related by a constant, inhomogeneous, general linear
transformation,

xm = Jmjq
j + vi0τ + xm0 (51)

t = τ + τ0 (52)

together with a possible time reversal of t.
We get a 16-parameter family of coordinate systems: nine for the independent compo-

nents of the nondegenerate 3×3 matrix J, three for the boosts vi0, three more for the arbitrary
translation, xm0 , and a single time translation.

Notice that the transformation includes the possibility of an arbitrary scale factor, e−2λ =
|det (Jm n)| .
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Appendix 2: Special conformal transformations
In this Appendix, we show that special conformal transformations are 1− 1 and onto on

compactified R3.
In three dimensions, there are ten independent transformations preserving the inner

product (or the line element) up to an overall factor: three rotations, three translations,
one dilatation and three special conformal transformations. The first six of these are well-
known for leaving ds2 invariant – they form the Euclidean group for 3-dimensional space
(or, equivalently the inhomogeneous orthogonal group, ISO(3)). The single dilatation is a
simple rescaling. In Cartesian coordinates it is just

xi = eλyi

where λ is any constant. The special conformal transformations are actually a second kind
of translation, performed in inverse coordinates, given by:

qi =
xi + x2bi

1 + 2bixi + b2x2

The inverse is given by:

xi =
qi − q2bi

1− 2qibi + q2b2

Clearly, these transformations are not well-defined on all of R3 because the denominator
vanishes when

0 = 1 + 2bixi + b2x2

We may demand bi different from zero since otherwise we have the identity map. Multiplying
by b2 we then find

0 = b2 + 2b2bixi +
(
b2
)2
x2

=
(
bi + b2xi

)2

Since the norm of a vector vanishes only if the vector itself vanishes we immediately have
the unique result

xi = − b
i

b2

Therefore, with a one point compactification (adding a “point at infinity” analogous to the
one point compactification of the complex plane), we can make the transformation one-to-one
and onto. Specifically, we define an inverse yi to every vector, xi except the origin,

yi = −x
i

x2

then extend the manifold by defining the point at infinity to be the point with coordinates
yi = 0.
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The general map now sends xi to

qi =
xi + x2bi

1 + 2bixi + b2x2

except for xi = − bi

b2
, which is mapped to the point at infinity. The point at infinity is mapped

to bi

b2
.
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Appendix 3: What is the velocity after a special conformal transformation?
Suppose a particle follows the path x (t) with velocity

v =
dx (t)

dt

If we introduce new coordinates

y =
x + x2b

1 + 2x · b + b2x2
= β−1

(
x + x2b

)
where β = (1 + 2x · b + b2x2) . Then

x (t) =
y − y2b

1− 2y · b + b2y2

and differentiating,

∂yi

∂xj
= β−1

(
δij + 2xjb

i
)
− β−2

(
xi + x2bi

) (
2bj + 2b2xj

)
(53)

This is just as complicated as it seems. The velocity in the new coordinates is

dyi

dt
= β−1 (v + 2 (x · v)b)− β−2

(
x + x2b

) (
2v · b + 2b2 (x · v)

)
= vj

(
β−1

(
δij + 2xjb

i
)
− β−2

(
xi + x2bi

) (
2bj + 2b2xj

))
(54)

The explicit form is probably the basis for Weinberg’s claim [14] , that under conformal
transformations “. . . the statement that a free particle moves at constant velocity [is] not

an invariant statement....” This is clearly the case – if vi = dxi

dt
is constant, dyi

dt
depends

on position in a complicated way. Indeed, as shown in Sec.3, constants become position
dependent as well, though there remains an invariant spectrum.

To understand the velocity transformation, note that using eq.(53) we may rewrite eq.(54)
in the usual form for the transformation of a vector.

∂yi

∂xj
=
∂yi

∂xj
vj

This is the reason we must introduce a derivative operator covariant with respect to special
conformal transformations. The statement vkDkv

i = 0 is then a manifestly conformally
covariant expression of constant velocity.
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Appendix 4: The geometry of special conformal transformations
We have shown that

gij = β−2ηij

But notice that, if we perform such a transformation, the connection and curvature no longer
vanish, but are instead given by

ea = β−1dxa

dea = ebωab
Ra
b = dωab − ωcbωac

The form of the curvature is given in many places (eg. [6]), but we provide the simple
derivation here for completeness. From the second equation it follows that

ωab = −
(
β,be

a − ηacηbdβ,ced
)

Then substituting into the curvature,

Ra
b = dωab − ωcbωac

= −δadβ,bceced + ηaeηbdβ,ece
ced + δadβ,cβ,be

ced − ηaeηbdβ,cβ,eeced

−δadβ,bβ,ceced + δadηbcη
feβ,fβ,ee

ced − ηbcηafβ,dβ,feced

Ra
bcd = δacβ,bd − δadβ,bc + ηaeηbdβ,ec − ηaeηbcβ,ed

+ (δadηbc − δac ηbd) ηfeβ,fβ,e

which is pure Ricci. Since the Weyl curvature tensor vanishes for conformally flat metrics,
Ra
bcd must be constructible from the Ricci tensor alone. To see this explicitly, write the Ricci

tensor and Ricci scalar,

Rbd = (n− 2) β,bd + ηbdη
ceβ,ec − (n− 1) ηbdη

feβ,fβ,e

R = 2 (n− 1) ηbdβ,bd − n (n− 1) ηfeβ,fβ,e

where

∂aβ = ∂a
(
1− 2x · b+ x2b2

)
= −2ba + 2b2xa

∂abβ = ∂b
(
−2ba + 2b2xa

)
= 2b2ηab

so finally,

Rbd = 4 (n− 1) b2 (1− β) ηbd

R = 4n (n− 1) b2 (1− β)
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The full curvature therefore is determined fully by the Ricci scalar:

Ra
bcd = (δac ηbd − δadηbc) 4b2 (1− β)

=
R

n (n− 1)
(δac ηbd − δadηbc)

where
R = 4n (n− 1) b2

(
2x · b− x2b2

)
We may also write

Rab −
1

4
Rηab = 0
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Appendix 5: The Lie algebras iso(3), so(4, 1) and so(4, 2)
For our gauging, we require the form of the Euclidean Lie algebra iso (3), the Euclidean-

conformal Lie algebra so (4, 1) and the Lorentz-conformal Lie algebra so (4, 2) . We can
find all three from the general form of any pseudo-orthogonal Lie algebra. Let ηAB =
diag(1, . . . , 1,−1, . . . ,−1), with p positive and q negative values, be the pseudo-metric. Then
the Lie algebra o(p, q) is[

MA
B,M

C
D

]
= −1

2

(
δCBM

A
D − ηBDηCEMA

E − ηACηBEME
D − δADMC

B

)
where the generators are MA

B = ηACMCB and MAB = −MBA. We evaluate this for so (4, 2)
then find so (4, 1) and iso (3) as sub-algebras.

First, from among the MAB, we identify the generators of Lorentz transformations,
translations, special conformal transformations and dilatations. Let A,B = 0, 1, . . . , 5 and
α, β = 0, 1, 2, 3 and rotate coordinates so that the (p, q) = (4, 2) metric takes the form

ηAB =


−1

1
1

1
1

1


Then identifying

1

2
Pα = Mα4 = −M4α

−1

2
Kα = Mα5 = −M5a

D = −2M45 = 2M54

we have,[
Mα

β,M
µ
ν

]
= −1

2

(
δµβM

α
ν − ηβνηµσMα

σ − ηαµηβσMσ
ν − δανM

µ
β

)
[Pα,M

µ
ν ] = −1

2

(
δµαδ

β
ν − ηανηµβ

)
Pβ

[Kα,Mµ
ν ] =

1

2

(
δαν δ

µ
β − η

αµηνβ
)
Kβ

[Pα, K
µ] = 2Mµ

α + δµαD

[D,Pα] = Pα

[D,Kα] = −Kα

with all other commutators vanishing. This is the usual form of the conformal algebra. The
matrices Mα

β generate Lorentz transformations, the four generators Pα lead to spacetime
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translations, Kα give translations of the point at infinity (special conformal transformations),
and D generates dilatations. Restricting α = (0, a) = (0, 1, 2, 3) to the spatial indices, we
immediately recognize the so (4, 1) sub-algebra

[Ma
b,M

c
d] = −1

2
(δcbM

a
d − ηbdηceMa

e − ηacηbeM e
d − δadM c

b)

[Pa,M
c
d] = −1

2

(
δcaδ

b
d − ηadηcb

)
Pb

[Ka,M c
d] =

1

2
(δadδ

c
b − ηacηdb)Kb

[Pa, K
c] = 2M c

a + δcaD

[D,Pa] = Pa

[D,Ka] = −Ka

This has the immediate iso (3) subalgebra

[Ma
b,M

c
d] = −1

2
(δcbM

a
d − ηbdηceMa

e − ηacηbeM e
d − δadM c

b)

[Pa,M
c
d] = −1

2

(
δcaδ

b
d − ηadηcb

)
Pb

While these relations describe iso (n) in any dimension n, in 3-dim we can simplify the
algebra using the Levi-Civita tensor to write

Ja = −1

2
ε bc
a Mbc

Mab = −ε c
ab Jc

Then we have the familiar form of iso (3) ,

[Ja, Jb] = ε c
ab Jc

[Ja, Pb] = ε c
ab Pc

[Pa, Pb] = 0
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Appendix 6: Hamilton’s principal function
Though the existence and properties of Hamilton’s principal function are well-known, we

give a brief proof of its existence here because the result is central to the non-measurability
of physical size change. This existence depends on the integrability of the Weyl vector along
classical paths, since

S (x, t) = −α0

ˆ x,t

x0,t0

(
H (xn (t) , pm (t))− pk (t)

dxk (t)

dt

)
dt

= −
ˆ
C

WAdx
A

= −
ˆ
C

W

where xn (t) , pm (t) describe any solution to Hamilton’s equations which passes through the
initial and final points. In order for S (x, t) to be a function, the result of this integration
must be independent of which classical path is chosen. Using Stoke’s theorem, the difference
between any two such integrals is given by

ˆ
C1

W−
ˆ
C2

W =

˛
C1−C2

W

=

¨
S

dW

where C1 and C2 are classical paths. This vanishes if and only if dW = 0. Computing, we
have

W = α0 (pmdx
m −Hdt)

dW = α0 (dpm ∧ dxm − dH ∧ dt)

= α0

(
dpm ∧ dxm − ∂H

∂pm
dpm ∧ dt− ∂H

∂xm
dxm ∧ dt

)
= α0

(
dpm +

∂H

∂xm
dt

)
∧
(
dxm − ∂H

∂pm
dt

)
= 0

where the final result follows from Hamilton’s equations. Thus, the integral of the Weyl
vector is a function,

S (x, t) = −
ˆ x

x0

W

when evaluated on classical paths.
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