Problems

September 14, 2018

- 1. Find the equations of motion by varying the following action functionals, then check whether you get the same thing from the Euler-Lagrange equation:
 - (a) $S[x] = \int \exp(\alpha \mathbf{x}^2 + \beta \mathbf{v}^2) dt$ for constants α and β .
 - (b) $S[x] = \int f(\mathbf{x}^2 \mathbf{v}^2) dt$ for any given function, f.
 - (c) $S[x] = \frac{1}{\int \mathbf{x} \cdot \mathbf{a} dt} + \int \mathbf{x} \cdot \mathbf{a} dt$, where $\mathbf{a} = \ddot{\mathbf{x}}$. Check that your answer makes sense. Is there a Lagrangian?
- 2. For a particle of mass *m* falling radially (so it is a 1-dimensional problem) in a (Newtonian) gravitational field $\mathbf{F} = -\frac{GMm}{r^2}\hat{\mathbf{r}}$, find the action. Show, using a scaling argument, the relationship between the period of any periodic orbit and the radius of the orbit (Kepler's law). Notice that only *M* can appear in the period, since *m* is only an overall factor. You only need to scale *r*, *M*, *G*, *t*.
- 3. Problem 7, Goldstein: A chain of uniform density and length L greater than the distance between its endpoints hangs between points (x_1, y_1) and (x_2, y_2) with gravitational potential mgy. Find the shape of the chain.
- 4. Problem 12, Goldstein: A small hoop of radius r rolls without slipping on a large, fixed hoop of radius R > r. Using a Lagrange multiplier to find the force of constraint, determine at what point the small hoop loses contact with the fixed one.
- 5. Goldstein, Problem 14, modified: Find the equation of motion for the Lagrangian

$$L = \frac{1}{2}e^{\gamma t} \left[m \dot{\mathbf{q}}^2 - k \mathbf{q}^2 \right]$$

where **q** lies in the xy plane. What quantity is conserved? Describe the system by finding and recognizing its equation of motion. Now rewrite the Lagrangian in terms of s where $\mathbf{s} = e^{\gamma t} \mathbf{q}$. Show the equation of motion for s has the opposite sign for γ . Now what is the conserved quantity? Is it the same or has $\gamma \to -\gamma$?

6. Using Lagrange multipliers, find the motion of a block of mass m sliding down a frictionless plane (the sloping side of a wedge-shaped block of mass M initially at rest on a frictionless table) inclined at angle θ . Find the motion of the block and wedge.