Problems

September 14, 2018

1. Find the equations of motion by varying the following action functionals, then check whether you get the same thing from the Euler-Lagrange equation:
(a) $S[x]=\int \exp \left(\alpha \mathbf{x}^{2}+\beta \mathbf{v}^{2}\right) d t$ for constants α and β.
(b) $S[x]=\int f\left(\mathbf{x}^{2} \mathbf{v}^{2}\right) d t$ for any given function, f.
(c) $S[x]=\frac{1}{\int \mathbf{x} \cdot \mathbf{a d} t}+\int \mathbf{x} \cdot \mathbf{a} d t$, where $\mathbf{a}=\ddot{\mathbf{x}}$. Check that your answer makes sense. Is there a Lagrangian?
2. For a particle of mass m falling radially (so it is a 1-dimensional problem) in a (Newtonian) gravitational field $\mathbf{F}=-\frac{G M m}{r^{2}} \hat{\mathbf{r}}$, find the action. Show, using a scaling argument, the relationship between the period of any periodic orbit and the radius of the orbit (Kepler's law). Notice that only M can appear in the period, since m is only an overall factor. You only need to scale r, M, G, t.
3. Problem 7, Goldstein: A chain of uniform density and length L greater then the distance between its endpoints hangs between points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ with gravitational potential mgy. Find the shape of the chain.
4. Problem 12, Goldstein: A small hoop of radius r rolls without slipping on a large, fixed hoop of radius $R>r$. Using a Lagrange multiplier to find the force of constraint, determine at what point the small hoop loses contact with the fixed one.
5. Goldstein, Problem 14, modified: Find the equation of motion for the Lagrangian

$$
L=\frac{1}{2} e^{\gamma t}\left[m \dot{\mathbf{q}}^{2}-k \mathbf{q}^{2}\right]
$$

where \mathbf{q} lies in the $x y$ plane. What quantity is conserved? Describe the system by finding and recognizing its equation of motion. Now rewrite the Lagrangian in terms of s where $\mathbf{s}=e^{\gamma t} \mathbf{q}$. Show the equation of motion for s has the opposite sign for γ. Now what is the conserved quantity? Is it the same or has $\gamma \rightarrow-\gamma$?
6. Using Lagrange multipliers, find the motion of a block of mass m sliding down a frictionless plane (the sloping side of a wedge-shaped block of mass M initially at rest on a frictionless table) inclined at angle θ. Find the motion of the block and wedge.

