Problem Set I.a

August 30, 2018

Problem Set 1: Due Wednesday, September 5

You may work all problems using Newton's second law.

1. The moment of inertia of a body with density ρ about any given axis is given by summing up $\rho r^2 d^3 x$ for each infinitesimal volume $d^3 x$ of the body, where r is the perpendicular distance from the axis to the volume element,

$$I = \int_{body} \rho r^2 d^3 x$$

From this, show that the moment of inertia of a flat circular disk of radius R, thickness L and mass M is $\frac{1}{2}MR^2$.

- 2. Atwood's machine with massive rope. Repeat the problem, but let the rope be of length L and have total uniform mass, m. Find the acceleration a. A rope passes over a uniform pulley of mass, M, and radius, R. Masses m_1 and m_2 , with $m_1 < m_2$, are attached to the ends of the rope. The system rotates toward m_2 with m_1 rising and m_2 falling with the same acceleration a. Take the direction of motion as positive for all forces and velocities. Find the acceleration a.
- 3. Use conservation of energy to find the escape velocity from Earth, where the potential is $V(r) = -\frac{GM_E}{r}$.
- 4. Rocket problem. A rocket is projected vertically upward, ejecting fuel with velocity u relative to the rocket. Let the total mass of the rocket be M and the total mass of fuel be m. Treating the gravitational force as nearly constant, $-mg\mathbf{k}$, find the speed of the rocket as a function of the mass of the fuel, v(m). What fraction, $\frac{m}{M}$, of the total mass must be fuel to reach escape velocity?
- 5. We have proved that the angular momentum,

$$\mathbf{L} = (\mathbf{r}(t) - \mathbf{R}) \times \mathbf{p}(t)$$

of a single particle about a fixed position, R, is related to the torque,

$$\mathbf{N} = (\mathbf{r}(t) - \mathbf{R}) \times \mathbf{F}(t)$$

by the equation

$$\mathbf{N} = \frac{d\mathbf{L}}{dt}$$

Now consider an *isolated system of particles* (this means there are no external forces, only the forces between the particles of the system) with positions \mathbf{r}_i and momenta \mathbf{p}_i . Let the force on the i^{th} particle by the j^{th} particle be \mathbf{F}_{ij} . Assume Newton's 3^{rd} Law holds, so that

$$\mathbf{F}_{ji} = -\mathbf{F}_{ij}$$

$$\mathbf{F}_{ii} = 0$$

Assume that the force between any two of the particles is a central force, i.e., it lies along the vector, $\mathbf{r}_{i}(t) - \mathbf{r}_{j}(t)$, between the two particles. The angular momentum of the i^{th} particle is then $\mathbf{L}_{i} = (\mathbf{r}_{i}(t) - \mathbf{R}) \times \mathbf{p}_{i}(t)$ with the torque on the i^{th} particle produced by the j^{th} given by $\mathbf{N}_{ij} = (\mathbf{r}_{i}(t) - \mathbf{R}) \times \mathbf{F}_{ij}(t)$ so the total torque on the i^{th} particle is

$$\mathbf{N}_{i} = \sum_{j=1}^{N} \left(\mathbf{r}_{i} \left(t \right) - \mathbf{R} \right) \times \mathbf{F}_{ij} \left(t \right)$$

therefore satisfies,

$$\mathbf{N}_i = \frac{d\mathbf{L}_i}{dt}$$

Show that the total angular momentum of the system,

$$\mathbf{L}_{tot} = \sum_{i=1}^{N} \mathbf{L}_{i}$$

is conserved.