Problems

October 4, 2018

I have reworded and/or given hints for the problems from Goldstein.

1. The first order perturbation of circular orbits for a bead constrained to move on a paraboloid is now (or will soon be) in the notes. Using the notation there, find the perturbative second order solution.
2. Carry out the perturbation of a circular orbit subject to an inverse-square-law central force. Show that the result gives a closed, elliptical orbit, that is, that the period of small oscillations is the same as the original orbital period.
3. Problem 3.14 and 3.15 , Goldstein: Show that the motion of a particle in a potential

$$
V(r)=-\frac{k}{r}+\frac{h}{r^{2}}
$$

is the same as the motion in a Kepler potential alone when expressed in a coordinate system rotating around the center of force. Equivalently, show that the motion is Keplerian with an anomalous precession of the orbit. For bound states $(E<0)$ with $\frac{h}{r_{\text {min }}} \ll k$ show that the rate of precession is

$$
\dot{\Omega}=\frac{2 \pi m h}{l^{2} \tau}
$$

where τ is the orbital period without the perturbation. After accounting for the effect of the other planets, the orbit of Mercury has a residual precession as a rate of 40 seconds of arc per century. Show that this could be accounted for by taking $h=k a \eta$ (where η is a small, dimensionless parameter) with η as small as 7×10^{-8}, where the eccentricity of Mercury's orbit is 0.206 and its period is 0.24 year.
4. Problem 3.23, Goldstein: A magnetic monopole is defined (though one has never been detected) by a magnetic field of the form

$$
\mathbf{B}=\frac{b}{r^{2}} \hat{\mathbf{r}}
$$

where b is constant. Suppose a single point source gives rise to both a central electric potential, $V=-\frac{k}{r}$, and this monopole field. A particle of mass m and electric charge q moves in response to the combined forces. Write Newton's equation of motion for the particle, where the force is given by the Lorentz force law,

$$
\mathbf{F}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

Because of the cross product, this is not a central force, and angular momentum is not conserved.
(a) By considering $\mathbf{r} \times \dot{\mathbf{p}}$ show that the vector

$$
\mathbf{D} \equiv \mathbf{L}-\frac{q b}{c} \frac{\mathbf{r}}{r}
$$

is conserved.
(b) Show that there exists a conserved generalization of the Laplace-Runge-Lenz vector, with \mathbf{D} replacing \mathbf{L}.

