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1 Phase space
Phase space is a dynamical arena for classical mechanics in which the number of independent dynamical
variables variables, qi, i = 1, 2, . . . , n, is doubled from n to 2n by treating either the velocities or the momenta
as independent variables. This has three important consequences.

First, the equations of motion become first order differential equations instead of second order, so that the
initial conditions specify a single point, (x0,p0) in phase space. In the Newtonian treatment, through any
point x0 there are still many solutions corresponding to different initial velocities. In phase spaces, however,
points are in 1-1 correspondence with initial conditions, so there is a unique solution to the equations
of motion through each point. This permits some useful geometric techniques in the study of even very
complicated systems, even chaotic ones.

Second, as we shall see, the set of transformations that preserve the equations of motion is enlarged. In
Lagrangian mechanics, we are free to use n general coordinates, qi, for our description. In phase space we
have 2n coordinates. Even though transformations among these 2n coordinates are not completely arbitrary,
there are far more allowed transformations. This large set of transformations allows us, at least formally, to
write a general solution to mechanical problems via the Hamilton-Jacobi equation.

Finally, quantum mechanics requires configuration and momentum variables to be on an equal footing
(consider, for example, the uncertainty relation, ∆x∆p ≥ ~

2 ). Phase space provides the right arena for this
equality. It is not surprising that the closest approach of classical mechanics to quantum mechanics occurs
in the Hamiltonian formulation.

1.1 Velocity phase space
While we will not be using velocity phase space here, it provides some motivation for our developments in
the next Sections. The formal presentation of Hamiltonian dynamics begins in Section 1.3.

Suppose we have an action functional

S =

ˆ
L (qi, q̇j , t) dt

dependent on n dynamical variables, qi (t), and their time derivatives. We might instead treat L (qi, uj , t) as
a function of 2n dynamical variables. Thus, instead of treating the the velocities as time derivatives of the
position variables, (qi, q̇i) we introduce n velocities ui and treat them as independent. Then the variations of
the velocities δui are also independent, and we end up with 2n equations. Finally, we include n constraints,
restoring the relationship between qi and q̇i,

S =

ˆ [
L (qi, uj , t) +

∑
λi (q̇i − ui)

]
dt

Now vary the 2n independent variables and the Lagrange multipliers. For the coordinates, qi,

0 = δqS

=

ˆ (
∂L

∂qi
δqi + λiδq̇i

)
dt

=

ˆ (
∂L

∂qi
− λ̇i

)
δqidt

so that
λ̇i =

∂L

∂qi
(1)

For the velocities, we find

0 = δuS

=

ˆ (
∂L

∂ui
− λi

)
δuidt
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so that
λi =

∂L

∂ui
(2)

and finally, varying the Lagrange multipliers, λi, we recover the constraints,

ui = q̇i (3)

We may eliminate the multipliers by differentiating the velocity equation

d

dt
(λi) =

d

dt

(
∂L

∂ui

)
to find λ̇i, then substituting this result for λ̇i into the Eq.(1)

λ̇i =
d

dt

(
∂L

∂ui

)
=

∂L

∂qi

Now, using the constraint to set ui = q̇i, we recover the Euler-Lagrange equation,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0

If the kinetic energy is of the form
∑n
i=1

1
2mu

2
i , then the Lagrange multipliers are just the Newtonian

momenta,

λi =
∂L

∂ui
= mui

= mq̇i

The space of all positions and velocities,
{(
xi, vi

)}
, is called velocity phase space.

1.2 Phase space
We can make the construction above more general by requiring the Lagrange multipliers to always be the
conjugate momenta. Combining the constraint equation with the equation for λi we have

λi =
∂L

∂q̇i

and we have defined the conjugate momentum to be exactly this derivative,

pi ≡
∂L

∂q̇i

Then the action becomes

S =

ˆ [
L (qi, uj , t) +

∑
pi (q̇i − ui)

]
dt

=

ˆ [
L (qi, uj , t)−

∑
piui +

∑
piq̇i

]
dt

For Lagrangians quadratic in the velocities, the first two terms become

L (qi, uj , t)−
∑

piui = L (qi, q̇, t)−
∑

piq̇i

= T − V −
∑

piq̇i

= − (T + V )
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For Lagrangians with no explicit time dependence, this is just the negative of the conserved energy, but
whether it is conserved or not, we now define the Hamiltonian to be

H ≡
∑

piq̇i − L (qi, q̇, t) (4)

Then we may write the Lagrangian as

S =

ˆ [∑
piq̇i −H

]
dt

This successfully eliminates the Lagrange multipliers from the formulation.
The term “phase space” is generally reserved for momentum phase space, spanned by coordinates qi, pj .

1.2.1 Legendre transformation

Notice that H =
∑
pj q̇j − L is, by definition, independent of the velocities, since

∂H

∂q̇i
=

∂

∂q̇i

∑
j

pj q̇j − L


=

∑
j

pjδij −
∂L

∂q̇i

= pi −
∂L

∂q̇i
≡ 0

Therefore, the Hamiltonian is a function of qi and pi only. This is an example of a general technique called
Legendre transformation. Suppose we have a function f , which depends on independent variables A,B and
dependent variables, having partial derivatives

∂f

∂A
= P

∂f

∂B
= Q

Then the differential of f is
df = PdA+QdB

A Legendre transformation allows us to interchange variables to make either P or Q or both into the
independent variables. For example, let g (A,B, P ) ≡ f − PA. Then

dg = df −AdP − PdA
= PdA+QdB −AdP − PdA
= QdB −AdP

so that g actually only changes with B and P , g = g (B,P ). Similarly, h = f −QB is a function of (A,Q)
only, while k = − (f − PA−QB) has (P,Q) as independent variables. Explicitly,

dk = −df + PdA+AdP +QdB +BdQ

= AdP +BdQ

and we now have
∂f

∂P
= A

∂f

∂Q
= B
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Legendre transformations are familiar from thermodynamics, where the internal energy U (S, V ) is given by
the second law,

dU = TdS − PdV

It may be altered by a Legendre transformation to give the Helmholz free energy, A = U −TS, the enthalpy,
H (S, P ) = U + PV , or the the Gibbs free energy, g (T, P ) = U − TS + PV .

We now see that writing
H =

∑
j

pj q̇j − L

is simply a Legendre transformation of the Lagrangian that replaces the momenta pi in place of the velcities
q̇i as independent variables.

2 Hamilton’s equations
The essential formalism of Hamiltonian mechanics is as follows. We begin with the action

S =

ˆ
L (qi, q̇j , t) dt

and define the conjugate momenta

pi ≡
∂L

∂q̇i

and Hamiltonian
H (qi, pj , t) ≡

∑
pj q̇j − L (qi, q̇j , t)

Then the action may be written as

S =

ˆ [∑
pj q̇j −H (qi, pj , t)

]
dt

where qi and pj are now treated as the independent variables.
Finding extrema of the action with respect to all 2n variables, we find for the coordinate variation,

0 = δqkS

=

ˆ  ∂

∂q̇k

∑
j

pj q̇j

 δq̇k −
∂H

∂qk
δqk

 dt

=

ˆ ∑
j

pjδjkδq̇k −
∂H

∂qk
δqk

 dt

=

ˆ (
pkδq̇k −

∂H

∂qk
δqk

)
dt

=

ˆ (
−ṗk −

∂H

∂qk

)
δqkdt

where we have discarded a surface term. Then

ṗk = −∂H
∂qk
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For the momentum variation,

0 = δpkS

=

ˆ  ∂

∂pk

∑
j

pj q̇j

 δpk −
∂H

∂pk
δpk

 dt

=

ˆ (
q̇kδpk −

∂H

∂pk
δpk

)
dt

=

ˆ (
q̇k −

∂H

∂pk

)
δpkdt

and we conclude that
q̇k =

∂H

∂pk

These are Hamilton’s equations. Whenever the Legendre transformation between L and H and between q̇k
and pk is non-degenerate, Hamilton’s equations,

q̇k =
∂H

∂pk
(5)

ṗk = −∂H
∂qk

(6)

form a system equivalent to the Euler-Lagrange equation or Newton’s second law.

2.1 Example: Newton’s second law
Suppose the Lagrangian takes the familiar form

L =
1

2
mẋ2 − V (x)

Then the conjugate momenta are

pi =
∂L

∂ẋi
= mẋi

and the Hamiltonian becomes

H (xi, pj , t) ≡
∑

pj ẋj − L (xi, ẋj , t)

= mẋ2 − 1

2
mẋ2 + V (x)

=
1

2
mẋ2 + V (x)

=
1

2m
p2 + V (x)

Notice that we must invert the relationship between the momenta and the velocities,

ẋi =
pi
m

then expicitly replace all occurrences of the velocity with appropriate combinations of the momentum.
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Hamilton’s equations are:

ẋk =
∂H

∂pk

=
pk
m

ṗk = − ∂H
∂xk

= − ∂V
∂xk

If we take a second time derivative of ẋk, to give mẍk = ṗk, and substitute into the second, we have

− ∂V
∂xk

= mẍk

thereby reproducing the usual definition of momentum and Newton’s second law.

2.2 Example: coupled oscillators
Suppose we have coupled oscillators comprised of two identical pendula of length l and each of mass m,
connected by a light spring with spring constant k. Let the first pendulum be displaced through an angle
θ1 and the second through θ2. Then since the potential of the spring is

1

2
k
(
4x2 +4y2

)
=

1

2
k
(

(l sin θ1 − l sin θ2)
2

+ (l cos θ1 − l cos θ2)
2
)

=
1

2
kl2
(
sin2 θ1 − 2 sin θ1 sin θ2 + sin2 θ2 + cos2 θ1 − 2 cos θ1 cos θ2 + cos2 θ22

)
= kl2 (1− sin θ1 sin θ2 − cos θ1 cos θ2)

= kl2 (1− cos (θ1 − θ2))

the action becomes

S =

ˆ [
1

2
ml2

(
θ̇21 + θ̇22

)
− kl2 (1− cos (θ1 − θ2))−mgl (1− cos θ1)−mgl (1− cos θ2)

]
dt

For small angles we approximate cos θ ≈ 1− 1
2θ

2 and the action becomes approximately

S =

ˆ [
1

2
ml2

(
θ̇21 + θ̇22

)
− 1

2
kl2 (θ1 − θ2)

2 − 1

2
mgl

(
θ21 + θ22

)]
dt

The conjugate momenta are,

p1 =
∂L

∂θ̇1

= ml2θ̇1

p2 =
∂L

∂θ̇2

= ml2θ̇2

so we may compute

H = p1θ̇1 + p2θ̇2 − L

= ml2θ̇21 +ml2θ̇22 −
(

1

2
ml2

(
θ̇21 + θ̇22

)
− 1

2
kl2 (θ1 − θ2)

2 − 1

2
mgl

(
θ21 + θ22

))
=

1

2
ml2

(
θ̇21 + θ̇22

)
+

1

2
kl2 (θ1 − θ2)

2
+

1

2
mgl

(
θ21 + θ22

)
7



Replacing velocities with momenta, the Hamiltonian is

H =
1

2ml2
(
p21 + p22

)
+

1

2
kl2 (θ1 − θ2)

2
+

1

2
mgl

(
θ21 + θ22

)
(7)

Notice again our elimination of the velocities in favor of the momenta.
Hamilton’s equations are:

θ̇1 =
∂H

∂p1

=
1

ml2
p1

θ̇2 =
∂H

∂p2

=
1

ml2
p2

ṗ1 = −∂H
∂θ1

= −kl2 (θ1 − θ2)−mglθ1

ṗ2 = −∂H
∂θ2

= kl2 (θ1 − θ2)−mglθ2

In this case, the first two equations reproduce the expressions for the momenta.
From here we may solve in any way that suggests itself. If we differentiate θ̇1 again, and use the third

equation, we have

θ̈1 =
1

ml2
ṗ1

= − k
m

(θ1 − θ2)− g

l
θ1

Similarly, for θ2 we have

θ̈2 =
k

m
(θ1 − θ2)− g

l
θ2

Subtracting,

θ̈1 − θ̈2 = −2k

m
(θ1 − θ2)− g

l
(θ1 − θ2)

d2

dt2
(θ1 − θ2) +

(
2k

m
+
g

l

)
(θ1 − θ2) = 0

so that
θ1 − θ2 = A sinω1t+B cosω1t

with

ω1 =

√
2k

m
+
g

l

Adding instead, we find
θ̈1 + θ̈2 = −g

l
(θ1 + θ2)

so that
θ1 + θ2 = C sinω2t+D cosω2t
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where ω2 =
√

g
l . Notice that ω2 depends only on the gravitational restoring force since changing the total

angle θ1 + θ2 does not stretch the spring.
The general motion is therefore a sum of two simple harmonic motions, with frequencies ω1 and ω2.

θ1 =
1

2
(A sinω1t+B cosω1t+ C sinω2t+D cosω2t)

θ2 =
1

2
(−A sinω1t−B cosω1t+ C sinω2t+D cosω2t)

p1 =
1

2
ml2 (Aω1 cosω1t−Bω2 sinω1t+ Cω2 cosω2t−Dω2 sinω2t)

p2 =
1

2
ml2 (−Aω1 cosω1t+Bω2 sinω1t+ Cω2 cosω2t−Dω2 sinω2t)

The constants A,B,C,D are determined by the four initial conditions θi0 and pi0 at time t = 0 by solving:

θ10 =
1

2
(B +D)

θ20 =
1

2
(D −B)

p10 = ml2 (ω1A+ ω2C)

p20 = ml2 (ω2C − ω1A)

This results in

A =
p10

2ml2ω1
− p20

2ml2ω1

B = θ10 − θ20
C =

p10
2ml2ω2

+
p20

2ml2ω2

D = θ10 + θ20

Notice that only one phase space curve, (θ1, θ2, p1, p2) passes through the phase space point (θ10, θ20, p10, p20).

3 Conservation and cyclic coordinates
From the relationship between the Lagrangian and the Hamiltonian, H = piẋi−L we see that if a coordinate
is cyclic in the Lagrangian it is also cyclic in the Hamiltonian,

∂H

∂xi
= − ∂L

∂xi

When a coordinate xi is cyclic then the corresponding Hamilton equation reads

ṗi = −∂H
∂xi

= 0

and the conjugate momentum

pi =
∂L

∂ẋi

is conserved, so the relationship between cyclic coordinates and conserved quantities still holds.
Hamilton’s equations show that we also have a corresponding statement about momentum. Suppose

some momentum, pi, is cyclic in the Hamiltonian,

∂H

∂pi
= 0

9



Then from Hamilton’s equations we immediately have

ẋi = 0

so that the coordinate xi is a constant of the motion.
Suppose we have a cyclic coordinate, say xn. Then the conserved momentum takes its initial value, pn0,

and the Hamiltonian is
H = H (x1, . . . xn−1; p1, . . . pn−1, pn0)

and therefore immediately becomes a function of 2 (n− 1) variables. This is simpler than the Lagrangian
case, where constancy of pn makes no immediate simplification of the Lagrangian.

Consider the time derivative of the Hamiltonian,

dH

dt
=

∂H

∂pi
ṗi +

∂H

∂qi
q̇i +

∂H

∂t

= q̇iṗi − ṗiq̇i +
∂H

∂t

=
∂H

∂t

so the Hamiltonian is conserved if it does not explicitly depend on time.

Example 1: As a simple example, consider the 2-dimensional Kepler problem, with Lagrangian

L =
1

2
m
(
ṙ2 + r2θ̇2

)
+
GM

r

with θ cyclic. The momenta are easily seen to be

pr = mṙ

pθ = mr2θ̇

so the Hamiltonian is

H =
p2r
2m

+
p2θ

2mr2
− GM

r

Here θ is cyclic so the conserved momentum pθ is constant. The Hamiltonian is therefore a function only of
(r, pr), with pθ constant,

H (r, θ, pr, pθ)⇒ H (r, pr; pθ)

Example 2: Let a mass, m, free to move in one direction, experience a Hooke’s law restoring force,
F = −kx. Solve Hamilton’s equations and study the motion of system in phase space. The Lagrangian for
this system is

L = T − V

=
1

2
mẋ2 − 1

2
kx2

The conjugate momentum is just

p =
∂L

∂ẋ
= mẋ
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so the Hamiltonian is

H = pẋ− L

=
p2

m
− 1

2
mẋ2 +

1

2
kx2

=
p2

2m
+

1

2
kx2

=
1

2m

(
p2 +m2ω2x2

)
We may write this in terms of ξA = (x, p) as

H =
1

2m
HABξ

AξB

where
HAB =

(
1 0
0 m2ω2

)
Since ∂H

∂t = 0, E = H is a constant of the motion. We see immediately that the solution is an ellipse in
phase space, E = 1

2m

(
p2 +m2ω2x2

)
, or

1

2mE
p2 +

mω2

2E
x2 = 1

The solution with initial conditions x (0) = x0, p (0) = p0 has E = 1
2m

(
p20 +m2ω2x20

)
x =

√
2mE

m2ω2
sinλ

p =
√

2mE cosλ

where λ is some function of time. To find λ, we look at one of Hamilton’s equations,

ẋ =
∂H

∂p

=
p

m√
2mE

m2ω2
λ̇ cosλ =

√
2mE

m
cosλ

λ̇ = ω

λ = ωt+ ϕ0

and therefore

x =

√
2mE

m2ω2
sin (ωt+ ϕ0)

p =
√

2mE cos (ωt+ ϕ0)

where
√

2mE
m2ω2 cosϕ0 = x0 and p0 =

√
2mE sinϕ0, or,

cosϕ0 =
mωx0√

2mE

sinϕ0 =
p0√
2mE

11



4 The symplectic form

4.1 Writing Hamilton’s equations with unified variables
In order to fully appreciate the power and uses of Hamiltonian mechanics, we develop some formal properties.
First, we write Hamilton’s equations,

ẋk =
∂H

∂pk

ṗk = − ∂H
∂xk

for k = 1, . . . , n, in a different way. Define a unified name for our 2n coordinates,

ξA = (xi, pj)

for A = 1, . . . , 2n. That is, more explicitly, for i = 1, . . . , n,

ξi = xi

ξn+i = pi

We may immediately write the left side of both of Hamilton’s equations at once as

ξ̇A = (ẋi, ṗj)

The right side of the equations involves all of the partial derivatives of the Hamiltonian,

∂H

∂ξA
=

(
∂H

∂xi
,
∂H

∂pj

)
but there is a difference of a minus sign between the two equations and the interchange of xi and pi. We
incorporate this by introducing a matrix called the symplectic form,

ΩAB =

(
0 1
−1 0

)
(8)

where [1]ij = δij is the n×n identity matrix. Then, using the summation convention, Hamilton’s equations,
Eqs.(5) amd (6), take the form of a single expression,

ξ̇A = ΩAB
∂H

∂ξB
(9)

We may check this by writing it out explicitly,(
ẋi
ṗj

)
=

(
0 δik
−δjm 0

)( ∂H
∂xm
∂H
∂pk

)

=

(
δik

∂H
∂pk

−δjm ∂H
∂xm

)

=

(
∂H
∂pi

− ∂H
∂xj

)
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Example: Coupled pendula For the example of two simple pendula coupled by a spring, we found the
Hamiltonian for small angles to be Eq.(7),

H =
1

2ml2
(
p21 + p22

)
+

1

2
kl2 (θ1 − θ2)

2
+

1

2
mgl

(
θ21 + θ22

)
and we set ξ1 = θ1, ξ2 = θ2, ξ3 = p1 and ξ4 = p2. In terms of these, the Hamiltonian may be written as a
symmetric quadratic form

H =
1

2
HABξAξB

HAB =


kl2 +mgl −kl2 0 0
−kl2 kl2 +mgl 0 0

0 0 1
ml2 0

0 0 0 1
ml2


with derivative,

∂

∂ξC
H =

1

2
HABδACξB +

1

2
HABξAδBC = HCBξB

Hamilton’s equations are then ξ̇A = ΩABHBCξC . Expanding this in matrices and multiplying them out,
ξ̇1
ξ̇2
ξ̇3
ξ̇4

 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0




kl2 +mgl −kl2 0 0
−kl2 kl2 +mgl 0 0

0 0 1
ml2 0

0 0 0 1
ml2




ξ1
ξ2
ξ3
ξ4



=


0 0 1

ml2 0
0 0 0 1

ml2

−kl2 −mgl kl2 0 0
kl2 −kl2 −mgl 0 0




ξ1
ξ2
ξ3
ξ4



=


1
ml2 ξ3
1
ml2 ξ4

−kl2ξ1 −mglξ1 + kl2ξ2
−kl2ξ2 −mglξ2 + kl2ξ1


so that we recover 

ξ̇1
ξ̇2
ξ̇3
ξ̇4

 =


1
ml2 ξ3
1
ml2 ξ4

−kl2 (ξ1 − ξ2)−mglξ1
kl2 (ξ1 − ξ2)−mglξ2


as expected.

4.1.1 Diagonalizing the Hamiltonian

One systematic method of solution is to diagonalize the Hamiltonian. With

HAB =


kl2 +mgl −kl2 0 0
−kl2 kl2 +mgl 0 0

0 0 1
ml2 0

0 0 0 1
ml2


we see that we only need to diagonalize the upper left quadrant,

Hij =

(
kl2 +mgl −kl2
−kl2 kl2 +mgl

)
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This has the form
H =

(
a b
b a

)
The eigenvalues are found by solving

0 = det (Hij − λδij)
= (a− λ)

2 − b2

a− λ = ±b
λ = a± b

and the eigenvectors satisfy (
a b
b a

)(
u±
v±

)
= (a± b)

(
u±
v±

)
so for the + sign we need

au+ + bv+ = (a+ b)u+

bu+ + av+ = (a+ b) v+

Solving, we see that v+ = u+. For the − sign, we need v− = −u−. Forming a matrix of the normalized
eigvectors,

O =
1√
2

(
1 1
−1 1

)
we diagonalize with a similarity transformation,

OtHO =
1√
2

(
1 −1
1 1

)(
a b
b a

)
1√
2

(
1 1
−1 1

)
=

1

2

(
1 −1
1 1

)(
a− b a+ b
b− a a+ b

)
=

1

2

(
2 (a− b) 0

0 2 (a+ b)

)
=

(
a− b 0

0 a+ b

)

Writing the four dimensional version of the transformation as O =

(
O 0
0 1

)
and performing the same

transformation on Hamilton’s equation,

Otξ̇ = OtΩOOtHOOtξ

Otξ̇A = OtΩO


a− b 0 0 0

0 a+ b 0 0
0 0 1

ml2 0
0 0 0 1

ml2




ξ̇1
ξ̇2
ξ̇3
ξ̇4

 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0




kl2 +mgl −kl2 0 0
−kl2 kl2 +mgl 0 0

0 0 1
ml2 0

0 0 0 1
ml2




ξ1
ξ2
ξ3
ξ4
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We also need

OtΩO =

(
Ot 0
0 1

)(
0 1
−1 0

)(
O 0
0 1

)
=

(
Ot 0
0 1

)(
0 1
−O 0

)
=

(
0 Ot

−O 0

)

OtΩO =
1√
2


1 −1
1 1 √

2 √
2




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 1√
2


1 1
−1 1 √

2 √
2



=
1

2


1 −1
1 1 √

2 √
2




0 0
√

2 0

0 0 0
√

2
−1 −1 0 0
1 −1 0 0



=
1

2


0 0

√
2 −

√
2

0 0
√

2
√

2

−
√

2

−
√

2


We do this by first finding the eigenvalues and eigenvectors. The eigenvalues satisfy

det (Hij − λδij) = 0

0 = det

(
kl2 +mgl − λ −kl2
−kl2 kl2 +mgl − λ

)
=

(
kl2 +mgl − λ

) (
kl2 +mgl − λ

)
− k2l4

=
(
kl2 +mgl

)2 − 2λ
(
kl2 +mgl

)
+ λ2 − k2l4

Solving the quadratic,

=
(
kl2 +mgl

)2 − 2λ
(
kl2 +mgl

)
+ λ2 − k2l4

λ =
1

2

(
2
(
kl2 +mgl

)
±
√

4 (kl2 +mgl)
2

+ 4k2l4
)

= kl2 +mgl ±
√

2mgl3k +m2g2l2 + 2k2l4

4.2 Properties of the symplectic form
We note a number of important properties of the symplectic form. First, it is antisymmetric,

Ωt = −Ω

ΩAB = −ΩBA

and it squares to minus the 2n-dimensional identity,

Ω2 = −1

15



(
0 1
−1 0

)(
0 1
−1 0

)
=

(
−1 0
0 −1

)
= −

(
1 0
0 1

)
We also have

Ωt = Ω−1

since Ωt = −Ω, and therefore ΩΩt = Ω (−Ω) = −Ω2 = 1. Since all components of ΩAB are constant, it is
also true that

∂AΩBC =
∂

∂ξA
ΩBC = 0

This last condition does not hold in every basis, however.
The defining properties of the symplectic form, necessary and sufficient to guarantee that it has the

properties we require for Hamiltonian mechanics are that it be a 2n × 2n matrix satisfying two properties
at each point of phase space:

1. Ω2 = −1

2. ∂AΩBC + ∂BΩCA + ∂CΩAB = 0

The first of these is enough for there to exist a change of basis so that ΩAB =

(
0 1
−1 0

)
at any given

point, while the vanishing combination of derivatives insures that this may be done at every point of phase
space.

4.3 Change of coordinates
Consider what happens to Hamilton’s equations if we want to change to a new set of phase space coordinates,
χA = χA (ξ) . Let the inverse transformation be ξA (χ) . The time derivatives become

dξA

dt
=
∂ξA

∂χB
dχB

dt

while the right side of Hamilton’s equation becomes

ΩAB
∂H

∂ξB
= ΩAB

∂χC

∂ξB
∂H

∂χC

Equating these expressions,
∂ξA

∂χB
dχB

dt
= ΩAB

∂χD

∂ξB
∂H

∂χD

Noticing that the inverse to the Jacobian matrix ∂ξA

∂χB is just ∂χA

∂ξB
,

∂χA

∂ξC
∂ξC

∂χB
= δAB

we multiply by ∂χC

∂ξA
to get

∂χC

∂ξA
∂ξA

∂χB
dχB

dt
=

∂χC

∂ξA
ΩAB

∂χD

∂ξB
∂H

∂χD

δCB
dχB

dt
=

∂χC

∂ξA
ΩAB

∂χD

∂ξB
∂H

∂χD

16



and finally
dχC

dt
=

(
∂χC

∂ξA
ΩAB

∂χD

∂ξB

)
∂H

∂χD

Defining the symplectic form in the new coordinate system,

Ω̃CD ≡ ∂χC

∂ξA
ΩAB

∂χD

∂ξB

we see that Hamilton’s equations are entirely the same if the transformation leaves the symplectic form
invariant,

Ω̃CD = ΩCD

Any linear transformation MA
B leaving the symplectic form invariant,

ΩAB ≡MA
CM

B
DΩCD

is called a symplectic transformation. Coordinate transformations which are symplectic transformations at
each point are called canonical. Therefore those functions χA (ξ) satisfying

ΩCD ≡ ∂χC

∂ξA
ΩAB

∂χD

∂ξB

are canonical transformations. Canonical transformations preserve Hamilton’s equations.

4.4 Poincaré sections
The phase space description of classical systems are equivalent to the configuration space solutions and are
often easier to interpret because more information is displayed at once. The price we pay for this is the
doubled dimension – paths rapidly become difficult to plot. To offset this problem, we can use Poincaré
sections – projections of the phase space plot onto subspaces that cut across the trajectories. Sometimes the
patterns that occur on Poincaré sections show that the motion is confined to specific regions of phase space,
even when the motion never repeats itself. These techniques allow us to study systems that are chaotic,
meaning that the phase space paths through nearby points diverge rapidly. See the Wikipedia page on Chaos
Theory. For more detail, read Gleick, Chaos: Making a New Science.

5 Poisson brackets
We may also write Hamilton’s equations in terms of Poisson brackets between dynamical variables. By a
dynamical variable, we mean any function f = f

(
ξA
)
of the canonical coordinates used to describe a physical

system.
We define the Poisson bracket of any two dynamical variables f and g by

{f, g}ξ = ΩAB
∂f

∂ξA
∂g

∂ξB

=
∂f

∂xi
∂g

∂pi
− ∂f

∂pi

∂g

∂xi
(10)

The importance of this product is that it is preserved by canonical transformations. We see this as follows.
Let ξA be any set of phase space coordinates in which Hamilton’s equations take the form given in Eq.(9),

dξA

dt = ΩAB ∂H
∂ξB

, and let f and g be any two dynamical variables. Denote the Poisson bracket of f and g in

17



the coordinates ξA be denoted by {f, g}ξ. In a different set of coordinates, χA (ξ) , we have

{f, g}χ = ΩAB
∂f

∂χA
∂g

∂χB

= ΩAB
(
∂ξC

∂χA
∂f

∂ξC

)(
∂ξD

∂χB
∂g

∂ξD

)
=

(
∂ξC

∂χA
ΩAB

∂ξD

∂χB

)
∂f

∂ξC
∂g

∂ξD

Therefore, if the coordinate transformation is canonical, we have

∂ξC

∂χA
ΩAB

∂ξD

∂χB
= ΩCD

and therefore,

{f, g}χ = ΩAB
∂f

∂ξC
∂g

∂ξD
= {f, g}ξ

and the Poisson bracket is unchanged. We conclude that canonical transformations preserve all Poisson
brackets.

Conversely, a transformation which preserves all Poisson brackets satisfies

{f, g}χ = {f, g}ξ(
∂ξC

∂χA
ΩAB

∂ξD

∂χB

)
∂f

∂ξC
∂g

∂ξD
= ΩCD

∂f

∂ξC
∂g

∂ξD

for all f, g and must therefore be canonical.
An important special case of the Poisson bracket occurs when one of the functions is the Hamiltonian.

In that case, we have

{f,H} = ΩAB
∂f

∂ξA
∂H

∂ξB

=
∂f

∂xi
∂H

∂pi
− ∂f

∂pi
∂H

∂xi

=
∂f

∂xi
dxi

dt
− ∂f

∂pi

(
−dpi
dt

)
=

df

∂t
− ∂f

∂t

or simply,
df

∂t
= {f,H}+

∂f

∂t

This shows that as the system evolves classically, the total time rate of change of any dynamical variable is
the sum of the Poisson bracket with the Hamiltonian and the partial time derivative. If a dynamical variable
has no explicit time dependence, ∂f∂t = 0, then the total time derivative is just the Poisson bracket with the
Hamiltonian. In particular, for the Hamiltonian itself.

dH

dt
= {H,H}+

∂H

∂t

=
∂H

∂t

so if the Hamiltonian is not explicitly time-dependent, then it is the then energy, and a constant of the
motion.
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The coordinates provide another important special case. Since neither xi nor pi has any explicit time
dependence, we have

dxi

dt
=

{
H,xi

}
dpi
dt

= {H, pi}

or simply

ξ̇A =
{
H, ξA

}
(11)

We check directly that this reproduces Hamilton’s equations,

dqi
dt

=
{
H,xi

}
=

N∑
j=1

 ∂xi

∂xj
∂H

∂pj
−
�
�
��7

0

∂xi

∂pj

∂H

∂xj


=

N∑
j=1

δij
∂H

∂pj

=
∂H

∂pi

and

dpi
dt

= {H, pi}

=

N∑
j=1


�
�
�7

0
∂pi
∂qj

∂H

∂pj
− ∂pi
∂pj

∂H

∂qj


= −∂H

∂qi

where we use the fact that, since qi, pi and are all independent and do not depend explicitly on time,
∂qi
∂pj

= ∂pi
∂qj

= 0 = ∂qi
∂t = ∂pi

∂t .

More generally, any dynamical variable with no explicit time dependence, ∂f
∂t = 0, is a constant of the

motion if and only if it has vanishing Poisson bracket with the Hamiltonian, {H, f} = 0.

6 Canonical transformations
We now define the fundamental Poisson brackets. Suppose xi and pj are a set of coordinates on phase space
such that Hamilton’s equations hold. Since they themselves are functions of (xm, pn) they are dynamical
variables and we may compute their Poisson brackets with one another,{

xi, xj
}
ξ

= ΩAB
∂xi

∂ξA
∂xj

∂ξB

=

N∑
m=1

(
∂xi

∂xm
∂xj

∂pm
− ∂xi

∂pm

∂xj

∂xm

)
= 0

19



for xi with xj ,

{
xi, pj

}
ξ

= −
{
pj , x

i
}
ξ

= ΩAB
∂xi

∂ξA
∂pj
∂ξB

=

N∑
m=1

(
∂xi

∂xm
∂pj
∂pm

− ∂xi

∂pm

∂pj
∂xm

)

=

N∑
m=1

δimδ
m
j

= δij

for xi with pj and finally

{pi, pj}ξ = ΩAB
∂pi
∂ξA

∂pj
∂ξB

=

N∑
m=1

(
∂pi
∂xm

∂pj
∂pm

− ∂pi
∂pm

∂pj
∂xm

)
= 0

for pi with pj . The subscript ξ on the bracket indicates that the partial derivatives are taken with respect
to the coordinates ξA =

(
xi, pj

)
. More succinctly, we have

{
ξA, ξB

}
ξ

= ΩCD
∂ξA

∂ξC
∂ξB

∂ξD

= ΩAB

However, since Poisson brackets are preserved by canonical transformations, this will hold when computed
with respect to any canonical coordinates,

{
ξA, ξB

}
χ

= ΩAB . This relation is reciprocol,

{
χA, χB

}
ξ

= ΩCD
∂χA

∂ξC
∂χB

∂ξD

= ΩAB

so that any set of coordinates in which Hamilton’s equations hold will satisfy fundamental commutation
relations, and this is true regardless of the canonical coordinates used to compute the bracket.

Conversely, suppose a set of coordinates ζA satisfies the fundamental commutation relations,{
ζA, ζB

}
ξ

= ΩAB

where ξA are canonical. Then expanding the definition of the bracket on the left,

ΩCD
∂ζA

∂ξC
∂ζB

∂ξD
= ΩAB

and the ζA must also be canonical.
In summary, let ξA be canonical. Then each of the following statements is equivalent:

1. χA (ξ) is a canonical transformation.

2. χA (ξ) is a coordinate transformation of phase space that preserves Hamilton’s equations.
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3. χA (ξ) preserves the symplectic form, according to

ΩAB
∂χC

∂ξA
∂χD

∂ξB
= ΩCD

4. χA (ξ) satisfies the fundamental bracket relations{
χA, χB

}
ξ

= ΩAB

These bracket relations represent a set of integrability conditions that must be satisfied by any new set of
canonical coordinates. When we formulate the problem of canonical transformations in these terms, it is not
obvious what functions qi

(
xj , pj

)
and πi

(
xj , pj

)
will be allowed. Fortunately there is a simple procedure

for generating canonical transformations, which we develop in the next section.
We end this section with three examples of canonical transformations, and one example of a non-canonical

transformation.

6.1 Example: Coordinate transformations
Let

(
xi, pj

)
be one set of canonical variables. Suppose we define new configuration space variables, qi, be an

arbitrary invertible function of the spatial coordinates:

qi = qi
(
xj
)

We seek a set of momentum variables πj such that
(
qi, πj

)
are canonical. For this they must satisfy the

fundamental Poisson bracket relations: {
qi, qj

}
x,p

= 0{
qi, πj

}
x,p

= δij

{πi, πj}x,p = 0

Check each:

{
qi, qj

}
x,p

=

N∑
m=1

(
∂qi

∂xm
∂qj

∂pm
− ∂qi

∂pm

∂qj

∂xm

)
= 0

since ∂qj

∂pm
= 0. For the second bracket, we require

δij =
{
qi, πj

}
x,p

=

N∑
m=1

(
∂qi

∂xm
∂πj
∂pm

− ∂qi

∂pm

∂πj
∂xm

)

=

N∑
m=1

∂qi

∂xm
∂πj
∂pm

Since qi is independent of pm, we can satisfy this only if

∂πj
∂pm

=
∂xm

∂qj

Integrating gives

πj =
∂xn

∂qj
pn + cj (x)
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with the cj an arbitrary functions of xi. Choosing cj = 0, we compute the final bracket:

{πi, πj}x,p =
∂πi
∂xm

∂πj
∂pm

− ∂πi
∂pm

∂πj
∂xm

=
∂

∂xm

(
∂xn

∂qi
pn

)
∂

∂pm

(
∂xs

∂qj
ps

)
− ∂

∂pm

(
∂xn

∂qi
pn

)
∂

∂xm

(
∂xs

∂qj
ps

)
=

∂xm

∂qj
∂

∂xm

(
∂xn

∂qi

)
pn −

∂xm

∂qi
∂

∂xm

(
∂xn

∂qj

)
pn

=

(
∂xm

∂qj
∂

∂xm

)(
∂xn

∂qi

)
pn −

(
∂xm

∂qi
∂

∂xm

)(
∂xn

∂qj

)
pn

=

(
∂2xn

∂qj∂qi
− ∂2xn

∂qi∂qj

)
pn

= 0

Exercise: Show that the final bracket, {πi, πj}x,p still vanishes provided ci = ∂f
∂qi for some function f (q).

Therefore, the transformations

qj = qj(xi)

πj =
∂xn

∂qj
pn +

∂f

∂qj

is a canonical transformation for any functions qi(x). This means that the symmetry group of Hamilton’s
equations includes the symmetry group of the Euler-Lagrange equations, and sill has some freedom.

6.2 Example 2: Interchange of x and p.

The transformation

qi = pi

πi = −xi

is canonical. We easily check the fundamental brackets:{
qi, qj

}
x,p

= {pi, pj}x,p = 0{
qi, πj

}
x,p

=
{
pi,−xj

}
x,p

=
{
xj , pi

}
x,p

= δji
{πi, πj}x,p =

{
−xi,−xj

}
x,p

= 0

Interchange of xi and pj , with a sign, is therefore canonical. The use of generalized coordinates in Lagrangian
mechanics does not include such a possibility, so again we see that Hamiltonian dynamics has a larger
symmetry group than Lagrangian dynamics.

For our next example, we first show that the composition of two canonical transformations is also canon-
ical. Let ψ (χ) and χ (ξ) both be canonical. Defining the composition transformation, ψ (ξ) = ψ (χ (ξ)) , we
compute

ΩCD
∂ψA

∂ξC
∂ψB

∂ξD
= ΩCD

(
∂ψA

∂χE
∂χE

∂ξC

)(
∂ψB

∂χF
∂χF

∂ξD

)
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=

(
∂χE

∂ξC
∂χF

∂ξD
ΩCD

)
∂ψA

∂χE
∂ψB

∂χF

= ΩEF
(
∂ψA

∂χE

)(
∂ψB

∂χF

)
= ΩAB

so that ψ (ξ) is canonical.

6.3 Example 3: Momentum transformations
By the preceding result, the composition of an arbitratry coordinate change with x, p interchanges is canon-
ical. Consider the effect of composing (a) an interchange, (b) a coordinate transformation, and (c) an
interchange.

For (a), let

q̃i = pi

π̃i = −xi

Then for (b) we choose an arbitrary function of q̃i :

Qi = F i
(
q̃j
)

Pi =
∂q̃n

∂Qi
π̃n

Finally, for (c), another interchange:

qi = Pi

πi = −Qi

Combining all three, we have

qi = Pi =
∂q̃n

∂Qi
π̃n = −∂p

n

∂πi
xn

πi = −Qi = F i
(
q̃j
)

= F i (pj)

so that πi is replaced by an arbitrary function of the original momenta. This establishes that replacing the
momenta by any independent functions of the momenta, preserves Hamilton’s equations as long as we choose
the proper coordinates qi.

6.4 Example 4: A non-canonical transformation
Let ξA =

(
xi, pi

)
be canonical and set

qi = p2xi

πi = πi (x,p)

Then {
qi, qj

}
=

N∑
m=1

(
∂qi

∂xm
∂qj

∂pm
− ∂qi

∂pm

∂qj

∂xm

)

=

N∑
m=1

(
δim

(
2pmqj + p2

�
�
�∂qj

∂pm

)
−

(
2pmqi + p2

�
�
�∂qi

∂pm

)
δjm

)

= 2

N∑
m=1

(
piqj − pjqi

)
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which is proportional to orbital angular momentum and not zero. Therefore, any transformations of this
form are not canonical.

7 Generating functions
There is a systematic approach to canonical transformations using generating functions. We will give a
simple example of the technique. Given a system described by a Hamiltonian H(xi, pj), with

dxi

dt
=

∂H

∂pi
dpi
dt

= −∂H
∂xi

we seek another Hamiltonian H ′(qi, πj) such that the equations of motion have the same form, namely

dqi

dt
=

∂H ′

∂πi
dπi
dt

= −∂H
′

∂qi

in the transformed variables. The principle of least action must hold for each pair:

S =

ˆ (
pidx

i −Hdt
)

S′ =

ˆ (
πidq

i −H ′dt
)

where S and S′ differ by at most a constant. Correspondingly, the integrands may differ by the addition of
an exact differential, df = df

dtdt, since this will integrate to a surface term and therefore will contribute at
most a constand to the action.

In general we may therefore write

pidx
i −Hdt = πidq

i −H ′dt+ df

and solve for the differential df
df = pidx

i − πidqi + (H ′ −H) dt (12)

Notice the differentials, dxi, dqi, dt on the right. For the differential of f to take this form, it must be a
function of xi, qi and t only, f = f (x,q, t) . Therefore, the differential of f is

df =
∂f

∂xi
dxi +

∂f

∂qi
dqi +

∂f

∂t
dt

Equating the expressions for df we match up terms to require

pi =
∂f

∂xi
(13)

πi = − ∂f
∂qi

(14)

H ′ = H +
∂f

∂t
(15)
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Eq.(13), where f is a given function of x,q and t, gives qi implicitly in terms of the original variables.
Inverting this to find qi = qi (x,p, t), we substitute into Eq.(14) to find πi (x,p, t) . Now, inverting to find
the old coordinates in terms of the new,

xi (q,π, t) , pi (q,π, t)

we move to the new Hamiltonian, Eq.(15), which becomes

H ′
(
qi, πj

)
= H

(
xi (q,π, t) , pl (q,π, t)

)
+
∂f
(
xi (q,π, t) ,q

)
∂t

The function f is the generating function of the transformation.
There are other types of generating functions. By making a Legendre transformation, we can change the

independent variables. For example, setting

f = pix
i + f2 (pi, qi, t)

we have

pidx
i −Hdt = πidq

i −H ′dt+ df

= πidq
i −H ′dt+ dpix

i + pidx
i + df2 (pi, qi, t)

−Hdt = πidq
i −H ′dt+ dpix

i + df2 (pi, qi, t)

so that the independent variables are now (pi, qi), satisfying

xi = −∂f2
∂pi

πi =
∂f2
∂qi

H ′ = H +
∂f2
∂t

We may also define

f = −πiqi + f3
(
xi, πj , t

)
so that

df = −πidqi − qidπi +
∂f3
∂xi

dxi +
∂f3
∂πi

dπi +
∂f3
∂t

dt

and therefore,

0 = −pidxi +Hdt+ πidq
i −H ′dt− πidqi − qidπi +

∂f3
∂xi

dxi +
∂f3
∂πi

dπi +
∂f3
∂t

dt

=

(
−pi +

∂f3
∂xi

)
dxi +

(
−qi +

∂f3
∂πi

)
dπi +

(
H −H ′ + ∂f3

∂t

)
dt

so that

pi =
∂f3
∂xi

qi =
∂f3
∂πi

H ′ = H +
∂f3
∂t

The final example, f = pix
i − πiqi + f4

(
pi, πj , t

)
, is left as an exercise.

In summary, the independent variables may be taken as either of the new coordinates
(
qi, πj

)
with either

of the old coordinates
(
xi, pj

)
.
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7.1 Example 1
Let f2 be a general quadratic,

f2
(
pi, q

j , t
)

=
1

2

(
aij (t) qiqj + bij (t) piq

j + cij (t) pipj
)

with aij and cij symmetric. Then f = pix
i + f2. Computing the differential of f ,

df = d
(
pix

i + f2
)

= dpix
i + pidx

i +
1

2
d
(
aij (t) qiqj + bij (t) piq

j + cij (t) pipj
)

= xidpi + pidx
i +

1

2

(
ȧij (t) qiqj + ḃij (t) piq

j + ċij (t) pipj

)
dt

+
1

2

(
2aij (t) qidqj + bij (t) dpiq

j + bij (t) pidq
j + 2cij (t) pidpj

)
we write Eq.(12) as

0 = df − pidxi + πidq
i − (H ′ −H) dt

and substitute,

0 = df − pidxi + πidq
i − (H ′ −H) dt

= dpix
i + pidx

i +
1

2

(
ȧij (t) qiqj + ḃij (t) piq

j + ċij (t) pipj

)
dt

+aij (t) qidqj +
1

2
bij (t) dpiq

j +
1

2
bij (t) pidq

j + cij (t) pidpj

−pidxi + πidq
i − (H ′ −H) dt

Canceling pidxi and collecting terms,

0 =

(
xi +

1

2
bij (t) qj + cji (t) pj

)
dpi

+

(
πi + aji (t) qj +

1

2
bji (t) pj

)
dqi

+

(
H −H ′ + 1

2

(
ȧij (t) qiqj + ḃij (t) piq

j + ċij (t) pipj

))
dt

Therefore,

xi = −1

2
bij (t) qj − cji (t) pj

πi = −aji (t) qj − 1

2
bji (t) pj

H ′ = H +
1

2

(
ȧij (t) qiqj + ḃij (t) piq

j + ċij (t) pipj

)
Solving for the new coordinate, we invert the matrix bi j ,

qm = −2
[
b−1
]m

i

(
xi + cij (t) pj

)
Then the new momentum is

πi = 2aim
[
b−1
]m

i

(
xi + cijpj

)
− 1

2
bji (t) pj
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Finally, inverting these and writing

H
(
xi, pi

)
= H

(
xi (q,π) , pi (q,π)

)
we have the new Hamiltonian,

H ′ (q,π) = H
(
xi (q,π) , pi (q,π)

)
+

1

2

(
ȧij (t) qiqj + ḃij (t) piq

j + ċij (t) pipj

)
8 Hamilton-Jacobi theory
We conclude with the crowning theorem of Hamiltonian dynamics: a proof that for any Hamiltonian dynam-
ical system there exists a canonical transformation to a set of variables on phase space such that the paths
of motion reduce to single points. Clearly, this theorem shows the power of canonical transformations! The
theorem relies on describing solutions to the Hamilton-Jacobi equation, which we introduce first.

8.1 Integrability of the action
We first define Hamilton’s principal function. Let xi (t) and pi (t) satisfy Hamilton’s equations of motion, and
ask for the integrability condition for the action. That is, we would like to know when the action is a function
and not a functional, S

[
xi (t)

]
⇒ S

(
xi, t

)
. The condition we need is just like the vanishing curl of a force

required for the existence of a potential function. Thinking of the n + 1 dimensional vectorPa = (pi,−H)
integrated along a curve in dXa =

(
xi, t

)
-space where a− = 1, . . . , n+ 1, the action is

S =

B̂

A

pidx
i −Hdt =

B̂

A

PadX
a

For S to be a function, this integral must be independent of path. Consider any two paths, C1 and C2 from
A to B. We require

´
C1
PadX

a =
´
C2
PadX

a, or combining the two paths taking one up and one down to
give a closed loop, C1 − C2, ˛

C1−C2

PadX
a = 0

Using Stokes’ theorem in n+ 1 dimensions, this becomes

0 =

˛

C1−C2

PadX
a

=

¨

S

(
∂Pa
∂Xb

− ∂Pb
∂Xa

)
d2Sab

for any surface S with boundary C1−C2. Since S and its boundary are arbitrary, the integrand must vanish,

∂Pa
∂Xb

− ∂Pb
∂Xa

= 0

This is the integrability condition for the action.
Writing this in terms of Pa = (pi, H) and Xb =

(
xj , t

)
we find four relations,

∂pi
∂xj
− ∂pj
∂xi

= 0

−∂H
∂xi
− dpi

dt
= 0
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dpi
dt

+
∂H

∂xi
= 0

−∂H
∂t

+
∂H

∂t
= 0

The first is satisfied because xi and pj are independent, ∂pi∂xj = 0, the middle two are equivalent and give one
of Hamilton’s equations, and the final equation is an identity. Therefore, S is a function if ṗi = − ∂H

∂xi .
The condition is not unique. Since we may integrate by parts,

S =

B̂

A

pidx
i −Hdt

=

B̂

A

d
(
pix

i
)
− xidpi −Hdt

= pix
i
∣∣B
A
−
ˆ (

xidpi +Hdt
)

a similar argument applied to
´ (
xidpi +Hdt

)
shows that ẋi = ∂H

∂pi
gives integrability. Therefore, if the

family of curves,
(
xi (t) , pj (t)

)
solve Hamilton’s equations, then evaluating the action on those curves gives

a function.
Exercise: Carry out the details of the demonstration that S becomes a function if ẋi = ∂H

∂pi

Finally, suppose one of Hamilton’s equations holds, say ṗi = − ∂H
∂xi . Then

S
(
xi, t

)
=

B̂

A

(
pidx

i −Hdt
)

=

B̂

A

(
d
(
pix

i
)
− xidpi −Hdt

)

=
(
pix

i
)∣∣B
A
−

B̂

A

(
xidpi −Hdt

)
so that

B̂

A

(
xidpi −Hdt

)
=

(
pix

i
)∣∣B
A
− S

(
xi, t

)
= S̃

(
xi, t

)
where S̃

(
xi, t

)
is also a function. The integrability condition for S̃

(
xi, t

)
must hold, and we have the second

Hamilton equation, ẋi = ∂H
∂pi

.
Therefore, the action is a function if and only if Hamilton’s equations hold.

8.2 The Hamilton-Jacobi equation
Conversely, suppose we replace the action with a function, S [x]→ S

(
xi, t

)
. Then

S
(
xi, t

)
=

ˆ
pidx

i −Hdt
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implies

dS = pidx
i −Hdt

∂S
∂xi

dxi +
∂S
∂t
dt = pidx

i −Hdt

so that

pi =
∂S
∂xi

H
(
xi, pj , t

)
= −∂S

∂t

If we replace pj in the Hamiltonian, we get a differential equation for Hamilton’s principal function,

H

(
xi,

∂S
∂xj

, t

)
= −∂S

∂t
(16)

This is the Hamilton-Jacobi equation. The function S satisfying the Hamilton-Jacobi equation is called
Hamilton’s principal function.

Example: Find the Hamilton-Jacobi equation for a simple harmonic oscillator Since the
Hamiltonian for the oscillator is

H =
p2

2m
+

1

2
kx2

the Hamilton-Jacobi equation is
1

2m

(
∂S
∂x

)2

+
1

2
kx2 = −∂S

∂t

Partial differential equations have free functions in their solutions. Thus, while

∂2f

∂x2
− ∂2f

∂t2
= 0

has the particular solution
f (x, t) = ax+ by + c

it has the much more general solution

f (x, y) = g− (x+ t) + g+ (x− t)

for any two functions g±. We therefore expect arbitrary functions in the solution for S

8.3 The principal function as generator of a canonical transformation
Suppose we find Hamilton’s principal function, S

(
xi, t

)
. Its relationship to the momentum, pi = ∂S

∂xi ,
suggests that we may use it as a generating function for a canonical transformation, S

(
xi, πj , t

)
= S

(
xi, t

)
.

This turns out to be especially useful.
We choose a generating function with independent variables xi, πj , so let

f = −
(
qi − qi0

)
πi + S

(
xi, t

)
Then, substituting into Eq.(12) we have

df = pidx
i − πidqi + (H ′ −H) dt

−
(
qi − qi0

)
dπi − πidqi +

∂S
∂xi

dxi +
∂S
∂πi

dπi +
∂S
∂t
dt = pidx

i − πidqi + (H ′ −H) dt

∂S
∂xi

dxi +
∂S
∂πi

dπi +
∂S
∂t
dt = pidx

i +
(
qi − qi0

)
dπi + (H ′ −H) dt
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so that the independent variables are now
(
xi, πi, t

)
. Equating like terms we must satisfy

pi =
∂S
∂xi

qi = qi0 +
∂S
∂πi

H ′ = H +
∂S
∂t

But we know that Hamilton’s principal function S satisfies

∂S
∂xi

= pi

∂S
∂πi

= 0

∂S
∂t

= −H

so the first two equations are satisfied and the new Hamilton vanishes, H ′ = 0.
The principal function has generated a transformation to a set of canonical variables for which the

Hamiltonian vanishes! This makes Hamilton’s equations trivial:

q̇i = 0

π̇i = 0

so
(
qi, πj

)
simply stay at their initial values,

(
qi0, π0j

)
.

8.4 Examples
8.4.1 Example 1: Free particle

The simplest example is the case of a free particle, for which the Hamiltonian is

H =
p2

2m

and the Hamilton-Jacobi equation is
∂S
∂t

= − 1

2m
(S ′)2

Let
S = f(x)− Et

Then f(x) must satisfy
df

dx
=
√

2mE

and therefore

f(x) =
√

2mEx− c
= πx− c

where c is constant and we write the integration constant E in terms of the new (constant) momentum,
E = π2

2m . Hamilton’s principal function is therefore

S (x, π, t) = πx− π2

2m
t− c
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Then, for a generating function of this type we have

p =
∂S
∂x

= π

q =
∂S
∂π

= x− π

m
t

H ′ = H +
∂S
∂t

= H − E

Because E = H, the new Hamiltonian, H ′, is zero. This means that both q and π are constant. The solution
for x and p follows immediately:

x = q +
π

m
t

p = π

We see that the new canonical variables (q, π) are just the initial position and momentum of the motion, and
therefore do determine the motion. The fact that knowing q and π is equivalent to knowing the full motion
rests here on the fact that S generates motion along the classical path. In fact, given initial conditions (q, π),
we can use Hamilton’s principal function as a generating function but treat π as the old momentum and x
as the new coordinate to reverse the process above and generate x(t) and p.

8.4.2 Example 2: Simple harmonic oscillator

For the simple harmonic oscillator, the Hamiltonian becomes

H =
p2

2m
+

1

2
kx2

and the Hamilton-Jacobi equation is

1

2m

(
∂S
∂x

)2

+
1

2
kx2 = −∂S

∂t

Setting S = f (x)− Et then

1

2m

(
df

dx

)2

+
1

2
kx2 = E

df

dx
=

√
2mE −mkx2

and direct integration (see examples, below) give a solution for S,

f =

ˆ
dx
√

2mE −mkx2

=
√

2mE

ˆ
dx

√
1− k

2E
x2

so with
√

k
2Ex = sinµ we have

f =
√

2mE

ˆ √
1− sin2 µ

√
2E

k
cosµdµ

=
2E

ω

ˆ
cos2 µdµ
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=
2E

ω

ˆ
1

2
(1 + cos 2µ) dµ

=
E

ω

(
µ+

1

2
sin 2µ

)
=

E

ω

(
sin−1

√
k

2E
x+ sin

(
sin−1

√
k

2E
x

)
cos

(
sin−1

√
k

2E
x

))

=
E

ω

(
sin−1

√
k

2E
x+

√
k

2E
x

√
1− k

2E
x2

)
Therefore,

S = f(x)− Et
as before, f(x) must satisfy

df

dx
=

√
2m

(
E − 1

2
kx2
)

and therefore

f(x) =

ˆ √
2m

(
E − 1

2
kx2
)
dx

=

ˆ √
π2 −mkx2dx

where we have set E = π2

2m . Now let
√
mkx = π sin y. The integral is immediate:

f(x) =

ˆ √
π2 −mkx2dx

=
π2

√
mk

ˆ
cos2 ydy

=
π2

2
√
mk

(y + sin y cos y)

Hamilton’s principal function is therefore

S (x, π, t) =
π2

2
√
mk

(
sin−1

(√
mk

x

π

)
+
√
mk

x

π

√
1−mkx

2

π2

)
− π2

2m
t− c

=
π2

2
√
mk

sin−1
(√

mk
x

π

)
+
x

2

√
π2 −mkx2 − π2

2m
t− c

and we may use it to generate the canonical change of variable.
This time we have for p,

p =
∂S
∂x

=
π

2

1√
1−mk x2

π2

+
1

2

√
π2 −mkx2 +

x

2

−mkx√
π2 −mkx2

=
1√

π2 −mkx2

(
π2

2
+

1

2

(
π2 −mkx2

)
− mkx2

2

)
=

1√
π2 −mkx2

(
π2 −mkx2

)
=

√
π2 −mkx2
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For q,

q =
∂S
∂π

=
∂

∂π

(
π2

2
√
mk

sin−1
(√

mk
x

π

)
+
x

2

√
π2 −mkx2 − π2

2m
t− c

)
=

π√
mk

sin−1
(√

mk
x

π

)
− x

2

π√
π2 −mkx2

+
x

2

π√
π2 −mkx2

− π

m
t

=
π√
mk

sin−1
(√

mk
x

π

)
− π

m
t

and finally H ′ = H + ∂S
∂t = H − E = 0. The first equation relates p to the energy and position, the second

gives the new position coordinate q, and third equation shows that the new Hamiltonian is zero. Hamilton’s
equations are trivial, so that π and q are constant.

Solving for π in terms of p,

p2 = π2 −mkx2

π =
√
p2 +mkx2

The solution for q may be solved directly for x (q, π),

q =
π√
mk

sin−1
(√

mk
x

π

)
− π

m
t

√
mk

π

(
q +

π

m
t
)

= sin−1
(√

mk
x

π

)
x =

π√
mk

sin

√
mk

π

(
q +

π

m
t
)

Setting ω =
√

k
m and A = π

mω , the initial phase is ϕ0 = mωq
π and the solution is

x (t) = A sin (ϕ0 + ωt)

The new canonical coordinates therefore characterize the initial amplitude and phase of the oscillator.

8.4.3 Example 3: One dimensional particle motion

Now suppose a particle with one degree of freedom moves in a potential U(x). Little is changed. The the
Hamiltonian becomes

H =
p2

2m
+ U

and the Hamilton-Jacobi equation is
∂S

∂t
= − 1

2m
(S′)

2
+ U(x)

Letting S = f(x)− Et as before, f(x) must satisfy

df

dx
=
√

2m (E − U (x))

and therefore

f(x) =

ˆ √
2m (E − U (x))dx

=

ˆ √
π2 − 2mU (x)dx
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where we have set E = π2

2m . Hamilton’s principal function is therefore

S (x, π, t) =

ˆ √
π2 − 2mU (x)dx− π2

2m
t− c

and we may use it to generate the canonical change of variable.
This time we have

p =
∂S

∂x
=

√
π2 − 2mU (x)

q =
∂S

∂π
=

∂

∂π

(ˆ x

x0

√
π2 − 2mU (x)dx

)
− π

m
t

H ′ = H +
∂S

∂t
= H − E = 0

The first and third equations are as expected, while for q we may interchange the order of differentiation
and integration:

q =
∂

∂π

(ˆ √
π2 − 2mU (x)dx

)
− π

m
t

=

ˆ
∂

∂π

(√
π2 − 2mU (x)

)
dx− π

m
t

=

ˆ
πdx√

π2 − 2mU (x)
− π

m
t

=

ˆ
dx√

1− U(x)
E

− π

m
t

To complete the problem, we need to know the potential. However, even without knowing U(x) we can make
sense of this result by combining the expression for q above to our previous solution to the same problem.
With π2 = 2mE, he solution for q may be written as

t+

√
m

2E
q =

√
m

2E

ˆ
dx√

1− U(x)
E

There, conservation of energy gives a first integral to Newton’s second law,

E =
p2

2m
+ U

=
1

2
m

(
dx

dt

)2

+ U

so we arrive at the familiar quadrature

E =
p2

2m
+ U

2E

m
=

(
dx

dt

)2

+
2

m
U√

2E

m

(
1− U

E

)
=

dx

dt

t− t0 =

ˆ
dt =

√
m

2E

ˆ x

x0

dx√
1− U

E

With q = −
√

2E
m t0 this has the same form as the solution for q.
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8.4.4 Example 4: Two dimensional oscillator as a central force

Suppose we have a mass fastened to a spring, moving on a tabletop, so that action is

S =

ˆ (
1

2
m
(
ṙ2 + r2ϕ̇2

)
− 1

2
kr2
)

The canonical momenta are

pr = mṙ

pϕ = mr2ϕ̇

so the Hamiltonian is

H =
1

2
m
(
ṙ2 + r2ϕ̇2

)
+

1

2
kr2

=
1

2m

(
p2r +

p2ϕ
r2

)
+

1

2
kr2

The Hamilton-Jacobi equation is

1

2m

((
∂S
∂r

)2

+
1

r2

(
∂S
∂ϕ

)2
)

+
1

2
kr2 = −∂S

∂t

Let S = f (r, ϕ)− Et to separate the time, so that

1

2m

((
∂S
∂r

)2

+
1

r2

(
∂S
∂ϕ

)2
)

+
1

2
kr2 = E

Now use separation of variables. Let
f = R (r) + Φ (ϕ)

Then (
dR

dr

)2

+
1

r2

(
dΦ

dϕ

)2

+ kmr2 = 2mE(
dR

dr

)2

+ kmr2 − 2mE = − 1

r2

(
dΦ

dϕ

)2

−r2
(
dR

dr

)2

− kmr4 + 2mEr2 =

(
dΦ

dϕ

)2

Since the left side depends only on r and the right only on ϕ, each side must equal some constant, a2:

−r2
(
dR

dr

)2

− kmr4 + 2mEr2 − a2 = 0

dΦ

dϕ
= ±a

We immediately integrated the equation for Φ:

Φ = ±aϕ+ b
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To find R:

−r2
(
dR

dr

)2

− kmr4 + 2mEr2 − a2 = 0

dR

dr
=

1

r

√
2mEr2 − kmr4 − a2

R =

ˆ
dr

r

√
2mEr2 − kmr4 − a2

=

ˆ
rdr

r2

√
2mEr2 − kmr4 − a2

Let z = r2,

R =
1

2

ˆ
dz

z

√
2mEz − kmz2 − a2

Complete the square

2mEz − kmz2 − a2 = −
(
mE√
km
−
√
kmz

)2

+
E2

ω2
− a2

where ω =
√

k
m . Then setting y =

√
kmz − mE√

km
, so that y√

km
+ mE

km = z

R =
1

2

ˆ
dy

√
km

(
y√
km

+ E
k

)√(E2

ω2
− a2

)
− y2

=
1

2

ˆ
dy(

y + E
ω

)√(E2

ω2
− a2

)
− y2

Now let y =
√

E2

ω2 − a2 sin θ

R =
1

2

ˆ
dy√(

E2

ω2 − a2
)

sin θ + E
ω

√
E2

ω2
− a2 cos θ

=
1

2

√
E2

ω2
− a2

ˆ
dy

sin θ + E√
(E2−a2ω2)

cos θ

= θ − 2a√
a2 − 1

tan−1

 E√
(E2−a2ω2)√
E2

E2−a2ω2 − 1

(
tan

(
θ

2

)
+ 1

)
= θ − 2a√

a2 − 1
tan−1

(
E

aω

(
tan

(
θ

2

)
+ 1

))
= θ − 2a√

a2 − 1
tan−1

(
a tan

(
θ
2

)
+ a

√
a2 − 1

)

where

θ = sin−1
(
mω2r2 − E√
E2 − a2ω2

)
Then

S = R (r) + aϕ− Et
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9 Quantum Mechanics and the Hamilton-Jacobi equation
The Hamiltonian-Jacobi equation provides the most direct link between classical and quantum mechanics.
There is considerable similarity between the Hamilton-Jacobi equation and the Schrödinger equation:

∂S
∂t

= −H(xi,
∂S
∂xi

, t)

i~
∂ψ

∂t
= H(x̂i, p̂i, t)

We make the relationship precise as follows.
Suppose the Hamiltonian in each case is that of a single particle in a potential:

H =
p2

2m
+ V (x)

Write the quantum wave function as
ψ = Ae

i
~ϕ

The Schrödinger equation becomes

i~
∂
(
Ae

i
~ϕ
)

∂t
= − ~2

2m
52
(
Ae

i
~ϕ
)

+ V
(
Ae

i
~ϕ
)

i~
∂A

∂t
e

i
~ϕ −Ae i

~ϕ
∂ϕ

∂t
= − ~2

2m
5 ·
(
e

i
~ϕ 5A+

i

~
Ae

i
~ϕ 5 ϕ

)
+ V Ae

i
~ϕ

= − ~2

2m
e

i
~ϕ

(
i

~
5 ϕ5A+52A

)
− ~2

2m
e

i
~ϕ

(
i

~
5A · 5ϕ+

i

~
A52 ϕ

)
− ~2

2m

(
i

~

)2

e
i
~ϕ (A5 ϕ · 5ϕ)

+V Ae
i
~ϕ

Then cancelling the exponential,

i~
∂A

∂t
−A∂ϕ

∂t
= − i~

2m
5 ϕ · 5A− ~2

2m
52 A

− i~
2m
5A · 5ϕ− i~

2m
A52 ϕ

+
1

2m
(A5 ϕ · 5ϕ) + V A

Collecting by powers of ~,

O
(
~0
)

: −∂ϕ
∂t

=
1

2m
5 ϕ · 5ϕ+ V

O
(
~1
)

:
1

A

∂A

∂t
= − 1

2m

(
2

A
5A · 5ϕ+52ϕ

)
O
(
~2
)

: 0 = − ~2

2m
52 A

The zeroth order terms is the Hamilton-Jacobi equation, with ϕ = S:

−∂S
∂t

=
1

2m
5S · 5S + V

=
1

2m
p2 + V (x)
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where p = 5S. Therefore, the Hamilton-Jacobi equation is the ~→ 0 limit of the Schrödinger equation.

Hψ =
p2

2m
ψ + V (x)ψ
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