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1 Phase space

Phase space is a dynamical arena for classical mechanics in which the number of independent dynamical
variables variables, ¢;, i = 1,2,...,n, is doubled from n to 2n by treating either the velocities or the momenta
as independent variables. This has three important consequences.

First, the equations of motion become first order differential equations instead of second order, so that the
initial conditions specify a single point, (xo,po) in phase space. In the Newtonian treatment, through any
point xg there are still many solutions corresponding to different initial velocities. In phase spaces, however,
points are in 1-1 correspondence with initial conditions, so there is a unique solution to the equations
of motion through each point. This permits some useful geometric techniques in the study of even very
complicated systems, even chaotic ones.

Second, as we shall see, the set of transformations that preserve the equations of motion is enlarged. In
Lagrangian mechanics, we are free to use n general coordinates, ¢;, for our description. In phase space we
have 2n coordinates. Even though transformations among these 2n coordinates are not completely arbitrary,
there are far more allowed transformations. This large set of transformations allows us, at least formally, to
write a general solution to mechanical problems via the Hamilton-Jacobi equation.

Finally, quantum mechanics requires configuration and momentum variables to be on an equal footing
(consider, for example, the uncertainty relation, AzAp > g) Phase space provides the right arena for this
equality. It is not surprising that the closest approach of classical mechanics to quantum mechanics occurs
in the Hamiltonian formulation.

1.1 Velocity phase space

While we will not be using velocity phase space here, it provides some motivation for our developments in
the next Sections. The formal presentation of Hamiltonian dynamics begins in Section 1.3.
Suppose we have an action functional

S = /L(qi,cjj,t)dt

dependent on n dynamical variables, g; (), and their time derivatives. We might instead treat L (¢;,u;,t) as
a function of 2n dynamical variables. Thus, instead of treating the the velocities as time derivatives of the
position variables, (g;, ¢;) we introduce n velocities u; and treat them as independent. Then the variations of
the velocities du; are also independent, and we end up with 2n equations. Finally, we include n constraints,
restoring the relationship between ¢; and ¢;,

S = / {L (qi,uj,t) + Z)\i (ql - ul)] dt
Now vary the 2n independent variables and the Lagrange multipliers. For the coordinates, ¢;,

0 = 6,8

= /((%5%4-)\1'5%) dt
dq;
oL .
= — N\ | 0q;dt
/(3%‘ ) ¢

: oL
- 1
)\z aQi ( )

so that

For the velocities, we find

0 = 6,5

oL




so that

oL
i = 2
o, (2)
and finally, varying the Lagrange multipliers, \;, we recover the constraints,
Ui = Gi (3)

We may eliminate the multipliers by differentiating the velocity equation

d d (0L
%= (o)

to find A;, then substituting this result for \; into the Eq.(1)

[ d oL 0L
v dt 8uz o 8qi
Now, using the constraint to set u; = ¢;, we recover the Euler-Lagrange equation,
d (0L oL 0
dt 6(]7 8(]7; N

If the kinetic energy is of the form >, %mu?, then the Lagrange multipliers are just the Newtonian
momenta,

0L
(‘3ui

=  mu;

Noo=

mg;

The space of all positions and velocities, {(mi, vi) }, is called welocity phase space.

1.2 Phase space

We can make the construction above more general by requiring the Lagrange multipliers to always be the
conjugate momenta. Combining the constraint equation with the equation for \; we have

oL
9,
and we have defined the conjugate momentum to be exactly this derivative,
0L
pi = 87%

Then the action becomes

S = /{ (gi,uj,t +sz i—uz}dt
= /[ q“ujv szuz+zpz%]

For Lagrangians quadratic in the velocities, the first two terms become

le uj? szuz = Qza q,t sz(b
= T-V-) i

= —(T+V)



For Lagrangians with no explicit time dependence, this is just the negative of the conserved energy, but
whether it is conserved or not, we now define the Hamiltonian to be

H=> " pigi — L(g,qt) (4)

Then we may write the Lagrangian as

S = /[Zpizji—H]dt

This successfully eliminates the Lagrange multipliers from the formulation.
The term “phase space” is generally reserved for momentum phase space, spanned by coordinates g;, p;.

1.2.1 Legendre transformation

Notice that H =) p;g; — L is, by definition, independent of the velocities, since

OH 0
_ Y G — L
0¢; 0¢; %:qua
oL
= ZP;‘% - o
; 9q;
B o oL
- 0q;
= 0

Therefore, the Hamiltonian is a function of ¢; and p; only. This is an example of a general technique called
Legendre transformation. Suppose we have a function f, which depends on independent variables A, B and
dependent variables, having partial derivatives

of
877P
of
25 = 9

Then the differential of f is
df = PdA+ QdB

A Legendre transformation allows us to interchange variables to make either P or ) or both into the
independent variables. For example, let g (A, B, P) = f — PA. Then
dg = df — AdP — PdA
= PdA+ QdB — AdP — PdA
= @QdB - AdP

so that g actually only changes with B and P, g = g (B, P). Similarly, h = f — QB is a function of (4, Q)
only, while k = — (f — PA — @B) has (P, Q) as independent variables. Explicitly,

dk = —df + PdA+ AdP + QdB + BdQ
AdP + BdQ
and we now have

of

ap — 4

of

. _ B

oQ



Legendre transformations are familiar from thermodynamics, where the internal energy U (S, V') is given by
the second law,
dU =TdS — PdV

It may be altered by a Legendre transformation to give the Helmholz free energy, A = U —T'S, the enthalpy,
H (S,P)=U + PV, or the the Gibbs free energy, g (T, P)=U — TS + PV.
We now see that writing
H = ijq'j — L
J

is simply a Legendre transformation of the Lagrangian that replaces the momenta p; in place of the velcities
¢; as independent variables.

2 Hamilton’s equations

The essential formalism of Hamiltonian mechanics is as follows. We begin with the action

S = /L(qz,qwt)dt

and define the conjugate momenta
oL

"= 94,

p

and Hamiltonian
H (qipj,t) = Y pids — L (i, 5, 1)

Then the action may be written as

S:/{ij(ij*H(qiapj,t) dt

where ¢; and p; are now treated as the independent variables.
Finding extrema of the action with respect to all 2n variables, we find for the coordinate variation,

0 = 06,5

0 OH
— E qi | 6qr, — =—06 dt
/ din - D;jq; gk e gk

. oH
/ ij(sjk&ﬂc_aiéq}c dt
J dk

) OH
/ (Pk5Qk - 85%) dt
dk
. OH
(- 2o
qk

where we have discarded a surface term. Then



For the momentum variation,

0 = 6,8
0 OH
= — E g | opr — —46 dt
/ Opr - p;q; Pk pr Dk

. 0H
= / (Qk5pk - 852%) dt
Pk
. 0H
(i
Pk
_om
ar = Or

These are Hamilton’s equations. Whenever the Legendre transformation between L and H and between gy,
and py is non-degenerate, Hamilton’s equations,

and we conclude that

. OH

k. = aTJk (5)
. OH

P = —aqu (6)

form a system equivalent to the Euler-Lagrange equation or Newton’s second law.

2.1 Example: Newton’s second law
Suppose the Lagrangian takes the familiar form

1
L= 5m>'<2 -V (x)

Then the conjugate momenta are

oL

and the Hamiltonian becomes
H(xi,pjt) = > pjdj— L(x,djt)

1
= mx?— §m5<2 +V (x)

= %m)’(2 +V (x)

1
= —p+V(x

2m
Notice that we must invert the relationship between the momenta and the velocities,

pi
m

Ty =

then expicitly replace all occurrences of the velocity with appropriate combinations of the momentum.



Hamilton’s equations are:

OH
Opk
P
m

. OH
Pk = _Txk
aVv
Oy
If we take a second time derivative of %, to give mZ, = pg, and substitute into the second, we have

v
81‘k

thereby reproducing the usual definition of momentum and Newton’s second law.

Ty =

= mfv'k

2.2 Example: coupled oscillators

Suppose we have coupled oscillators comprised of two identical pendula of length [ and each of mass m,
connected by a light spring with spring constant k. Let the first pendulum be displaced through an angle
#, and the second through 6. Then since the potential of the spring is

1 1
ik (Aazz + AyQ) = §k; ((lsin 0, — lsin 92)2 + (Icosy —lcos 92)2>
1
= Zk? (sin2 01 — 2sin 6y sin Oy + sin® Oy + cos? B — 2 cos O cos Oy + cos> 9%)
= kI*(1 —sinf, sinfy — cos Oy cos fy)
kl? (1 — cos (01 — 62))
the action becomes
1 . .
S = / [le2 (9% + 9%) — ki? (1 — cos (A1 — 02)) — mgl (1 — cos 1) — mgl (1 — cos 92)} dt
For small angles we approximate cosf ~ 1 — %92 and the action becomes approximately
1 . . 1 1
S = / [lez (e‘f‘ n eg) — ST (61 = 2)° = Smgl (63 + 93)] dt

The conjugate momenta are,
0L
P = 8791
= mlzél
oL
P2 = 3792

= mi%0,
SO we may compute
H = pifi+pbo—L
= mi20? + mi%62 — (;mﬂ (éf + ég) - %le (01 — )% — %mgl (02 + 95))

1 | 1
= Gmi’ (9? + 95) + 5 kt? (01— 62)" + Smgl (67 + 63)



Replacing velocities with momenta, the Hamiltonian is

1 1
= Pi+p3) + Ski® (01— 02)" + Smgl (67 + 63) (7)

1
2ml? ( 2

Notice again our elimination of the velocities in favor of the momenta.
Hamilton’s equations are:

o0H

op1
1
Wpl
on
Opa
1
= sz
_oH
001
= —k‘lg (91 — 92) — mgl91
_9H
00,

= le (91 — 92) — m9192

b =
by —

P =
D2 =

In this case, the first two equations reproduce the expressions for the momenta.
From here we may solve in any way that suggests itself. If we differentiate 6, again, and use the third
equation, we have

. 1 .
0 = b
k
= —Ewrwg—§&

Similarly, for 65 we have

. k
b, = Ewrwgf%%
Subtracting,
. 2k
bi—b; = == (01— 62) = (61— )
d? 2k g
ﬁ(91—92)+ <m+l) (01—62) = 0
so that
01 — 0y = Asinwit + B coswit
with
2k
w1 = — + g
m
Adding instead, we find
b+ 0y =7 (0, + 6,

l
so that
01 + 02 = Csinwst + D coswat



where ws = 1/%. Notice that wy depends only on the gravitational restoring force since changing the total
1 p y g g ging

angle 6, + 6> does not stretch the spring.
The general motion is therefore a sum of two simple harmonic motions, with frequencies w; and ws.

0 = %(Asinwlt—i— Bcoswit + Csinwat + D cos wat)

0, = %(—Asinwlt — Bceoswit + C'sinwsat + D cos wat)

p1 = %le (Aw; coswit — Bwa sinwit + Cws cos wat — Dws sin wat)
Py = %ml2 (—Aw; coswit + Bwa sinwit + Cws cos wat — Dws sin wat)

The constants A, B, C, D are determined by the four initial conditions #;y and p;y at time ¢ = 0 by solving:

1
910 = 5 (B + D)
1
920 - 5 (D - B)
po = mil? (w1 A+ woC)
P20 = le (CUQC — wlA)
This results in
A = Pio P20
2ml2w;  2ml2w;
B = 010—10
C = P1io P20
2ml2ws  2ml2ws
D = 0610+ 00

Notice that only one phase space curve, (61, 02, p1, p2) passes through the phase space point (619, 620, P10, P20)-

3 Conservation and cyclic coordinates

From the relationship between the Lagrangian and the Hamiltonian, H = p;&; — L we see that if a coordinate
is cyclic in the Lagrangian it is also cyclic in the Hamiltonian,

OH 0L
8xi o 81‘i
When a coordinate x; is cyclic then the corresponding Hamilton equation reads
OH
) = — = O
pi oz,
and the conjugate momentum
oL
b= 5,

is conserved, so the relationship between cyclic coordinates and conserved quantities still holds.
Hamilton’s equations show that we also have a corresponding statement about momentum. Suppose
some momentum, p;, is cyclic in the Hamiltonian,

oH

Op; =0




Then from Hamilton’s equations we immediately have
z; =0

so that the coordinate x; is a constant of the motion.
Suppose we have a cyclic coordinate, say x,,. Then the conserved momentum takes its initial value, pyq,
and the Hamiltonian is
H=H (£C17 co o Tpn—15 P1,y - - 'pnfhpn())

and therefore immediately becomes a function of 2 (n — 1) variables. This is simpler than the Lagrangian
case, where constancy of p, makes no immediate simplification of the Lagrangian.
Consider the time derivative of the Hamiltonian,

dH OH . OH , OH
@ - ot ag? T o
e Y OH
= qDi—Diq +E
_ oH
ot

so the Hamiltonian is conserved if it does not explicitly depend on time.

Example 1: As a simple example, consider the 2-dimensional Kepler problem, with Lagrangian

1 . GM
L=-m (r'2 + r292) +
2 r
with 6 cyclic. The momenta are easily seen to be
pr = mr
py = mrf
so the Hamiltonian is
g o_ P, rg  GM
2m  2mr? T

Here 6 is cyclic so the conserved momentum py is constant. The Hamiltonian is therefore a function only of
(r,pr), with pg constant,

H (r,0,p,,p9) = H (r,pr;pp)

Example 2: Let a mass, m, free to move in one direction, experience a Hooke’s law restoring force,
F = —kx. Solve Hamilton’s equations and study the motion of system in phase space. The Lagrangian for
this system is

L = T-V

1 5, 1

= = — =k
i 5 k%

The conjugate momentum is just
oL .
= —=mi
P=%9i

10



so the Hamiltonian is

2m 2
_ 2,2 2
= m(p+mwx)

We may write this in terms of ¢4 = (z, p) as

1
H = —HypeicP
2m

1 0
Hap = ( 0 miw? )

Since 2 m =0, F = H is a constant of the motion. We see immediately that the solution is an ellipse in

phase space, £ = 21n (p + m2w2:62) or

where

2
mw? o

= 1
p+2Em

2mE

The solution with initial conditions z (0) = xo,p (0) = po has E = 5 (p§ + m*w?})

2mE .
r = ﬁsm)\
mAw

p = V2mEcos\

where A is some function of time. To find A, we look at one of Hamilton’s equations,

. OH
r = —
dp
- P
m
[2mE . 2mE
L/\ cosA = n cos A
m2w? m
A w
A wt + ©g
and therefore
2mE .
x = 57 S (Wt + o)
p = V2mEcos(wt+ pg)
where 4/ i’?fz cos g = xg and pg = v 2mE sin ¢, or,
mwxg
cos =
o 2mE
singg = Po
0o =
2mE



4 The symplectic form

4.1 Writing Hamilton’s equations with unified variables

In order to fully appreciate the power and uses of Hamiltonian mechanics, we develop some formal properties.
First, we write Hamilton’s equations,

. OH
Tk = —_—
Opk
. OH
P = ozn
for k =1,...,n, in a different way. Define a unified name for our 2n coordinates,
&a = (xi,pj)

for A=1,...,2n. That is, more explicitly, for i =1,...,n,

& = m;
En+i = Di

We may immediately write the left side of both of Hamilton’s equations at once as
§a = (24, D))
The right side of the equations involves all of the partial derivatives of the Hamiltonian,

on _ (o on
064 \Oz; Op,

but there is a difference of a minus sign between the two equations and the interchange of z; and p;. We
incorporate this by introducing a matrix called the symplectic form,

Qap = ( _01 é ) (8)

where [1],. = d;; is the n x n identity matrix. Then, using the summation convention, Hamilton’s equations,
Egs.(5) amd (6), take the form of a single expression,

: oOH
§a= QAB@ (9)

We may check this by writing it out explicitly,

()

|
7N
S o
3
o
~__
N
Qoo
:S:cg“‘:c
~__—

12



Example: Coupled pendula For the example of two simple pendula coupled by a spring, we found the
Hamiltonian for small angles to be Eq.(7),

1 2 2 Lo 2, 1 2, 2
H = 5] (pl +p2) + §kl (6 —602)" + imgl (91 + 92)

and we set & = 01,& = 05,3 = p1 and £ = ps. In terms of these, the Hamiltonian may be written as a
symmetric quadratic form

1
H = SHaplals
kI% + mgl —kI? 0 0
I B —kI*>  kP+mgl 0 0
AR 0 0 L0
0 0 0 -
with derivative,
0 1 1
+—H=_-Hapdacép + ;Hapéadpc = Hopép
0¢c 2 2
Hamilton’s equations are then f A = QapHpcéc. Expanding this in matrices and multiplying them out,
& 0 0 10 K2 +mgl  —k2 0 0 &
& - 0 0 01 —kI? k> +mgl 0 0 &
& - -1 0 00 0 0 L0 &
£, 0 -1 00 0 0 0 I &
0 0 = 0 &
_ 0 0 0 L £
—kI? — mgl kl? 0 0 &3
k12 —kI2—mgl 0 0 &4
s
_ Tl
—kI?& — mgléy + kP&

—kl2& — mglés + kI?&

so that we recover

&1 e
S | _ —&4
& || k(& - &) —mglé
€4 k2 (& — &) — mglés

as expected.

4.1.1 Diagonalizing the Hamiltonian

One systematic method of solution is to diagonalize the Hamiltonian. With

kI + mgl —kI? 0 0

Har — —kI*>  kP+mgl 0 0
AB = 0 0 1
0 0 0

we see that we only need to diagonalize the upper left quadrant,

o — ki> +mgl  —kI?
N —kl? kl? + mgl

13



This has the form

The eigenvalues are found by solving

0 = det (Hij — )\(5”')
= (a— 2?2 — b2
a—XN = =£b
A atb
and the eigenvectors satisfy
a b Ut \ Ut
(3 2) ()= (02)
so for the + sign we need
auy +bvy = (a+b)uy
buy +avy = (a+b)vg
Solving, we see that v, = uy. For the — sign, we need v_ = —u_. Forming a matrix of the normalized

eigvectors,

O'HO = <

Writing the four dimensional version of the transformation as O = < 8 (1) ) and performing the same

transformation on Hamilton’s equation,

Ot = O'QOO0'HOO¢

a=b 0 0 0
t e~ _ t 0 a+b 0 O
O'¢a = 00 0 1 o

0 0 0 L
& 0 0 10 K2 +mgl  —ki2 0 0 &
& _ 0 0 01 —kI*>  KP4mgl 0 0 &
&3 - -1 0 00 0 0 L0 &
& 0 -1.0 0 0 0 0 &

14



We also need

ot 0 0 1 O 0
t —
o0 = (T V)5 0)(01)
B o' 0 0 1
o 0 1 -0 0
- 0 Ot
- -0 0
1 -1 0 0 10 1 1
1 1 1 0 0 01 1 -1 1
t - i
0o = V2 V2 -1 0 0 0 2 V2
V2 0 -1 0 0
1 -1 0 0 V2 0
111 0 0 0 V2
B V2 -1 -1 0 0
V2 1 -1 0 0
0 0 V2 —V2
1 0 0 V2 V2
T2 V2
-2
We do this by first finding the eigenvalues and eigenvectors. The eigenvalues satisfy
det(Hij—)\(;ij) =0
_ kl? +mgl — A —kl?
0 = d“( e KI2 4 mgl —

= (kI® +mgl — \) (kI* + mgl — \) — K*I*
(K12 +mgl)® — 2X (KI® + mgl) + A — K21*

Solving the quadratic,

— (K2 +mgl)” —2X (K> + mgl) + A2 — k21

1
A= <2 (k> + mgl) £ \/4 (k12 + mgl)® + 4k2z4)

= kI® + mgl £ \/2mgl3k + m2¢212 + 2k2[

4.2 Properties of the symplectic form

We note a number of important properties of the symplectic form. First, it is antisymmetric,

Q= -0

Qap = —Qpa

and it squares to minus the 2n-dimensional identity,



(3 1)

We also have

since QY = —Q, and therefore Q0! = Q(—Q) = —Q? = 1. Since all components of Q4p are constant, it is
also true that

0
0Aflpe = @QBC =0

This last condition does not hold in every basis, however.

The defining properties of the symplectic form, necessary and sufficient to guarantee that it has the
properties we require for Hamiltonian mechanics are that it be a 2n x 2n matrix satisfying two properties
at each point of phase space:

1. 92 =-1
2. 04A0Bc +0B2ca +0cap =0

0 1
-1 0
point, while the vanishing combination of derivatives insures that this may be done at every point of phase
space.

The first of these is enough for there to exist a change of basis so that Qap = at any given

4.3 Change of coordinates

Consider what happens to Hamilton’s equations if we want to change to a new set of phase space coordinates,
x4 = x* (€). Let the inverse transformation be ¢4 (). The time derivatives become

et _ 08" dxP
dt — OxB dt
while the right side of Hamilton’s equation becomes

QABaiH _ OAB aXC oH
o¢B OEB 9y ¢

Equating these expressions,
0t dx” _ apdx” OH

OxEB dt 0EB oxP
Noticing that the inverse to the Jacobian matrix gf%f: is just gg—g,
6XA 6£C — 5A
9EC OxB B
. C
we multiply by B’E—A to get
o« ogt ax” _ ox“ apdx” 0H
06A OxB dt oA OEB 9P
5C dx” _ O0x®  apdx” 0H
Bat OEA OEB 9\ D

16



and finally

dx® _ (0xC apOx”\ OH
dt A" 9EB | 9xD

Defining the symplectic form in the new coordinate system,

aeD — ox“ OAB ax”
oA 0B

we see that Hamilton’s equations are entirely the same if the transformation leaves the symplectic form

invariant,
OCD _ CD

Any linear transformation M4 ; leaving the symplectic form invariant,
QAB = MA CMB DQCD

is called a symplectic transformation. Coordinate transformations which are symplectic transformations at
each point are called canonical. Therefore those functions x4 (¢) satisfying

O°fD = ox“ OAB ox”
oA o¢B

are canonical transformations. Canonical transformations preserve Hamilton’s equations.

4.4 Poincaré sections

The phase space description of classical systems are equivalent to the configuration space solutions and are
often easier to interpret because more information is displayed at once. The price we pay for this is the
doubled dimension — paths rapidly become difficult to plot. To offset this problem, we can use Poincaré
sections — projections of the phase space plot onto subspaces that cut across the trajectories. Sometimes the
patterns that occur on Poincaré sections show that the motion is confined to specific regions of phase space,
even when the motion never repeats itself. These techniques allow us to study systems that are chaotic,
meaning that the phase space paths through nearby points diverge rapidly. See the Wikipedia page on Chaos
Theory. For more detail, read Gleick, Chaos: Making a New Science.

5 Poisson brackets

We may also write Hamilton’s equations in terms of Poisson brackets between dynamical variables. By a
dynamical variable, we mean any function f = f (§ A) of the canonical coordinates used to describe a physical
system.

We define the Poisson bracket of any two dynamical variables f and g by

of o
{f79}g = QABagﬁag%
of dg  Of Og

= : — : 1
ox' Op;  Op; Ox* (10)

The importance of this product is that it is preserved by canonical transformations. We see this as follows.
Let £€4 be any set of phase space coordinates in which Hamilton’s equations take the form given in Eq.(9),
At _ )AB OH

= OED and let f and g be any two dynamical variables. Denote the Poisson bracket of f and g in

17



the coordinates ¢4 be denoted by {f, g}E. In a different set of coordinates, Y (£), we have

af 0Oy
{fvg}x = ABaxiAaxiB

_ qan (960 05\ (967 0y
x4 0EC dyB o¢D
(9 qandEP 0F 0y
oA OxB ) 9&C 9¢p
Therefore, if the coordinate transformation is canonical, we have
afc QAB 8§D — QCD
OxA oxB
and therefore,
of Og
_ OAB —
{fvg}x =0 857085717 = {f79}g

and the Poisson bracket is unchanged. We conclude that canonical transformations preserve all Poisson

brackets.
Conversely, a transformation which preserves all Poisson brackets satisfies

{fag}x = {fag}g
(C%CQABafD)af 99 _ QCDﬁ@

IxA oxB ) 0cC o¢b 9EC 0P

for all f, g and must therefore be canonical.
An important special case of the Poisson bracket occurs when one of the functions is the Hamiltonian.
In that case, we have
g Of OH
of OH 0Of OH
9’ Op; — Op’ O,
of dz* of ( dpi>

oxi dt  Opt \ dt
_ 9 _of
ot ot

or simply,

df af

o H Z)

ot U H + ot
This shows that as the system evolves classically, the total time rate of change of any dynamical variable is
the sum of the Poisson bracket with the Hamiltonian and the partial time derivative. If a dynamical variable

has no explicit time dependence, %{ = 0, then the total time derivative is just the Poisson bracket with the
Hamiltonian. In particular, for the Hamiltonian itself.

dH OH
_ — H H _
dt {H, H} + ot
_ OH
Y

so if the Hamiltonian is not explicitly time-dependent, then it is the then energy, and a constant of the
motion.
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The coordinates provide another important special case. Since neither 2 nor p; has any explicit time
dependence, we have

dat
dt
dp;
dt

{H,a'}

= {Hapi}

or simply

&= {1 (11)
We check directly that this reproduces Hamilton’s equations,

dg;

a — Uhe

0

_ 5| oron oyon
= 0z Op; pj Oxd

and

dp;
dt

= {H’pi}

0
O %;Z/aH Op: OH
- ; 4; Op;  Op; Og;
OH
- 9qi
where we use the fact that, since ¢;,p; and are all independent and do not depend explicitly on time,
o= G =0= = -
More generally, any dynamical variable with no explicit time dependence 9 — 0, is a constant of the

' Bt
motion if and only if it has vanishing Poisson bracket with the Hamiltonian, {H, f} = 0.

6 Canonical transformations

We now define the fundamental Poisson brackets. Suppose z' and p; are a set of coordinates on phase space
such that Hamilton’s equations hold. Since they themselves are functions of (z™,p,) they are dynamical
variables and we may compute their Poisson brackets with one another,

i 5 . AB axi 8.’1}‘7
thelle = 05 ge

B i <6xi Oxd ox’ 8xj>

‘ 9z™ Opy, B Opm Ox™

= 0
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for ' with z7,
; ; 92 Op;
7 . _ oot _ ABY* YFy
{= ’pj}g =—{pj,= }g = Q DEA DEB
_ g: dx' dp;  dx' Op;
- A= \0x™ Oy Opy, Dz

= D ooy

m=1

2

%

<N

for ' with p; and finally

Ipi Op;
{Phpj}g = ABagAafilja

_ i (82% 9p; _ Opi 6pj)

= ox™ Opy, - Opm, Ox™
=0

for p; with p;. The subscript £ on the bracket indicates that the partial derivatives are taken with respect
to the coordinates €4 = (:cl, pj) . More succinctly, we have

oM o¢B
€8 = 250 e
QAB

However, since Poisson brackets are preserved by canonical transformations, this will hold when computed
with respect to any canonical coordinates, {fA, ¢B }x = Q4B This relation is reciprocol,

oxA oxB
A B _ CD
{X » X }g = Q 3{0 afD

QAB

so that any set of coordinates in which Hamilton’s equations hold will satisfy fundamental commutation
relations, and this is true regardless of the canonical coordinates used to compute the bracket.
Conversely, suppose a set of coordinates ¢4 satisfies the fundamental commutation relations,

A +B\ _ OAB
where ¢4 are canonical. Then expanding the definition of the bracket on the left,

cpdCt At ap
OEC aeP

and the ¢4 must also be canonical.
In summary, let €4 be canonical. Then each of the following statements is equivalent:

1. x*(€) is a canonical transformation.

2. x4 (€) is a coordinate transformation of phase space that preserves Hamilton’s equations.
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3. x* (&) preserves the symplectic form, according to

A Ox© X" — CD
0eA O¢B

4. x4 (¢) satisfies the fundamental bracket relations

{XA7XB}£ — QAB

These bracket relations represent a set of integrability conditions that must be satisfied by any new set of
canonical coordinates. When we formulate the problem of canonical transformations in these terms, it is not
obvious what functions ¢° (:Ej,pj) and 7; (wj7pj) will be allowed. Fortunately there is a simple procedure
for generating canonical transformations, which we develop in the next section.

We end this section with three examples of canonical transformations, and one example of a non-canonical
transformation.

6.1 Example: Coordinate transformations

Let (xi, pj) be one set of canonical variables. Suppose we define new configuration space variables, ¢*, be an
arbitrary invertible function of the spatial coordinates:

¢ =q' (27)

We seek a set of momentum variables 7; such that (¢’

fundamental Poisson bracket relations:

,ﬂ'j) are canonical. For this they must satisfy the

{qi’qj}z,p =0
{qi’ Trj}z,p = 6.;
{Tri’ﬂ-j}ac,p = 0
Check each:
i g S 0¢ O dq Og
{¢\d},, = > %™ oo " B -
’ el €T Pm D O
=0
since aapi; = 0. For the second bracket, we require
5 = {d.m},,
N i i
_ Z 8q 679- _ 8(] 87rj
— 0x™ Opy,  Opp, O™

B i dq' o
- o] 8I7n apm

Since ¢ is independent of p,,, we can satisfy this only if

om;  0x™
Opm — O¢
Integrating gives
T = ?qun +¢; (@)
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with the ¢; an arbitrary functions of 2. Choosing ¢; = 0, we compute the final bracket:

_ Om Om;  Omi Omy
{m’ﬂJ}x,p ~ 0x™ Opm  Opy, Ox™

0 ox™ o [0x® o [0x" 0 ox?®
= 3o () 7o (Grtr) = () 3 (57
0™ 0 az™ oz™ 0 az™
T og 39:’”<8qi)p"_ g’ W<W>p”

_ (0x™ O Ox™ _(0x2™ 0 Oz
N ¢y dx™ oq’ bn oqt Oz™ oq’ Pn

- Pam PPam
N 0¢idqt  0q*dqi bn
= 0

Exercise: Show that the final bracket, {m;, m;} still vanishes provided ¢; = g Ji for some function f (q).

Therefore, the transformations

¢ = )
o of
R

is a canonical transformation for any functions ¢*(x). This means that the symmetry group of Hamilton’s
equations includes the symmetry group of the Euler-Lagrange equations, and sill has some freedom.

6.2 Example 2: Interchange of x and p.
The transformation
qi = Di

T = —X

is canonical. We easily check the fundamental brackets:

{d.d},, = upd,,=0
{7}, = {p.—2"},,

= {«ni},,

_
{mimite, = {-2', =2}, =0

Interchange of z* and pj, with a sign, is therefore canonical. The use of generalized coordinates in Lagrangian
mechanics does not include such a possibility, so again we see that Hamiltonian dynamics has a larger
symmetry group than Lagrangian dynamics.

For our next example, we first show that the composition of two canonical transformations is also canon-
ical. Let ¢ (x) and x (§) both be canonical. Defining the composition transformation, ¢ (§) = ¥ (x (£)), we
compute

QCD%% _ Qcp (WJA 8XE) <8¢B GXF)
0¢C ogP OxE 9¢C ) \ oxF o¢P
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(2507 ) 00 007

0£C oeb OxE oxF
_ qEr (001 (008
- oOxE ox¥
— QAB

so that v (£) is canonical.

6.3 Example 3: Momentum transformations

By the preceding result, the composition of an arbitratry coordinate change with x, p interchanges is canon-
ical. Consider the effect of composing (a) an interchange, (b) a coordinate transformation, and (c) an
interchange.

For (a), let
i = bi
7~Ti = —l‘i
Then for (b) we choose an arbitrary function of ¢ :
¢ = F@
oq"
P = =7,
Q"
Finally, for (¢), another interchange:
¢ = B
T = _Ql
Combining all three, we have
. oq"™ . ap"
o= P = =, = ———u,
1 Q" om; "
no= -Q = F(@) = F )

so that m; is replaced by an arbitrary function of the original momenta. This establishes that replacing the
momenta by any independent functions of the momenta, preserves Hamilton’s equations as long as we choose
the proper coordinates ¢°.

6.4 Example 4: A non-canonical transformation

Let 4 = (l’i7 pi) be canonical and set
¢ = p*
T = ' (Xv p)

Then

{d'.d}

ZN: ¢ ¢ 9" O
ox™ Opy, apm ox™

m=1
N . .
I 0q) og ;
B[ frenR) (o))
D Dm,
= 2) (V¢ -p4q)

m=1
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which is proportional to orbital angular momentum and not zero. Therefore, any transformations of this
form are not canonical.

7 Generating functions

There is a systematic approach to canonical transformations using generating functions. We will give a
simple example of the technique. Given a system described by a Hamiltonian H (2", p;), with

dxt _ OH
dt N 8pi
dpi o OH
)

we seek another Hamiltonian H'(q’, m;j) such that the equations of motion have the same form, namely

d¢¢ OH'
dt o 871'1'
dﬂ'i - OH'
a ¢

in the transformed variables. The principle of least action must hold for each pair:

/ (pida:i — Hdt)

/ (midq" — H'dt)

where S and S’ differ by at most a constant. Correspondingly, the integrands may differ by the addition of
an exact differential, df = Z—J;dt, since this will integrate to a surface term and therefore will contribute at

most a constand to the action.
In general we may therefore write

S

Sl

pidx’ — Hdt = m;dg' — H'dt + df
and solve for the differential df ‘ .
df = pidx* — mdq" + (H' — H) dt (12)

Notice the differentials, dx’,dq’,dt on the right. For the differential of f to take this form, it must be a
function of z*,¢* and ¢ only, f = f (x,q,t). Therefore, the differential of f is

_Of i Of i Of
daf = 8xidx + 8qidq + 9t dt
Equating the expressions for df we match up terms to require
of
P = ; 1
p e (13)
of
, = —— 14
" o (14)
of
H = H+ = 1
+ 5 (15)
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Eq.(13), where f is a given function of x,q and ¢, gives ¢’ implicitly in terms of the original variables.
Inverting this to find ¢* = ¢’ (x,p,t), we substitute into Eq.(14) to find m; (x,p,t). Now, inverting to find
the old coordinates in terms of the new,

xi (q7 ™, t) y Di (qa , t)
we move to the new Hamiltonian, Eq.(15), which becomes

. . 8 i ’ ’t ’
H' (qlvﬂj) = H(xl (qaﬂ-vt)7pl (q,ﬂ'ﬂf))‘i‘ f(x (Cgtﬂ- ) q)

The function f is the generating function of the transformation.
There are other types of generating functions. By making a Legendre transformation, we can change the
independent variables. For example, setting

f=pix" + f2 (pi, gis t)

we have
pida’ — Hdt = mdq' — H'dt + df
= mdq’ — H'dt + dp;a’ + pida’ + dfa (pi, ¢, 1)
—Hdt = mdq' — H'dt + dp;x* + dfs (pi, ¢, t)
so that the independent variables are now (p;, g;), satisfying
oo
Op;
o op
i aqz
af2
H = H+ ===
o
We may also define
f o= —md+f5 ('m0
so that of of of
df = —mdq' — ¢'dm; + 2= da’ 2 dmy 4+ —2dt
f = mmdg’ = gdmi + G st g ldm
and therefore,
. , , . 0 .0 0
0 = —pida’ + Hdt + mdq’ — H'dt — mdq’ — ¢'dm; + OFs gy 4 083 g 083y,
ox? 671'1‘ ot
Ofs ; ;L Ofs ;. Ofs
= —D; | da’ —q' dm; H—-H +—|dt
(p+axz)x+(q+am T + Jr@t
so that
ks
DPi Or
. 0fs
q 87r,»
Ofs
H = H+-==
AT

The final example, f = p;z* — m;¢" + f4 (pi, 5, t), is left as an exercise.
In summary, the independent variables may be taken as either of the new coordinates (qi, 7Tj) with either
of the old coordinates (:Ei,pj).
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7.1 Example 1

Let f3 be a general quadratic,

(ai; (1) d'q + V' (t) pig” + 7 () pip;)

; 1
f2 (pi7q]7t) = 5

with a;; and ¢¥ symmetric. Then f = p;a’ + f2. Computing the differential of f,
df = d(pia'+ fa)
= dpiz’ + pida’ + %d (ai; (1) d'd + V' (t) pie? + 7 () pip;)
= a'dp; + pida’ + % (dij (t)d'd + Eij (t) pig? + ¢V (t) Pz‘pj) dt
+% (2ai; () ¢'dg’ +b'; (t) dpig’ + b'; (t) pidg’ + 2¢7 (t) pidp;)

we write Eq.(12) as

0 = df —pida +mdq' — (H' — H)dt
and substitute,
0 = df —pida’ +mdg' — (H' — H)dt
= dpix’ + pida’ + % (dij t) ' + b (t) pig? + ¢ (t) pipj) dt

1. 1. ) -
+a;; (t) ¢"dg’ + iblj (t) dpiq’ + §b3 (t) pidq’ + ¢ (t) pidp;
—pida’ + midgt — (H' — H)dt

Canceling p;dz’ and collecting terms,
i Lo j ji
i L ;
+(m+a; )¢ + §bi (t)p; | dg

+ (H —-H' + (dm (t)q'q” + 0% (t) pig’ + ¥ (1) pipj)> dt

2
Therefore,
. 1 . S
't = —gsz(t)qj—cﬂ(t)m
o= —au()d - gV (0

&
I

H+3 (“ia‘ () ¢’ + %5 (1) pig” + ¢V (t)pipj)
Solving for the new coordinate, we invert the matrix b’ >

¢t = =2[b7]7, (2" + ¢ (1) py)
Then the new momentum is

mo= 2 b7 () — 2V (0
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Finally, inverting these and writing

we have the new Hamiltonian,
H'(qm) = H(a'(qm).pi(am) +5 (a0 a'q +5; 0 pig + (0)pip;)

8 Hamilton-Jacobi theory

We conclude with the crowning theorem of Hamiltonian dynamics: a proof that for any Hamiltonian dynam-
ical system there exists a canonical transformation to a set of variables on phase space such that the paths
of motion reduce to single points. Clearly, this theorem shows the power of canonical transformations! The
theorem relies on describing solutions to the Hamilton-Jacobi equation, which we introduce first.

8.1 Integrability of the action

We first define Hamilton’s principal function. Let 2° (¢) and p; (t) satisfy Hamilton’s equations of motion, and
ask for the integrability condition for the action. That is, we would like to know when the action is a function
and not a functional, S [z*(t)] = S (27,t). The condition we need is just like the vanishing curl of a force
required for the existence of a potential function. Thinking of the n 4+ 1 dimensional vectorP, = (p;, —H)

integrated along a curve in dX* = (zi, t)—space where a— = 1,...,n + 1, the action is
B B
S = /pidaci — Hdt = /Puan
A A

For S to be a function, this integral must be independent of path. Consider any two paths, C; and C5 from
A to B. We require fCl P, dX* = sz P,dX*%, or combining the two paths taking one up and one down to
give a closed loop, C; — Cy,

§I§ P,dX* = 0

C1—C>

Using Stokes’ theorem in n + 1 dimensions, this becomes

o
Il

P,dX*

Ci—Ca
0P, 0P\ 5w
= — d=s®
// (3X b 9Xea )
s
for any surface S with boundary C; —Cs. Since S and its boundary are arbitrary, the integrand must vanish,

orP, 0P,

Xt 9Xe
This is the integrability condition for the action.
Writing this in terms of P, = (p;, H) and X® = (CEj, t) we find four relations,

i Opj  _ 0
oxd Ozt
ozt e
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ori 0
,aiH + 87H — 0
ot ot

The first is satisfied because z* and p; are independent Ip; — = 0, the middle two are equivalent and give one

» DI
of Hamilton’s equations, and the final equation is an identity. Therefore, S is a function if p; = —gg.

The condition is not unique. Since we may integrate by parts,

B

S = /pidxi—Hdt
A

= /d (piz*) — a'dp; — Hdt
A

= pixi|§ 7\/(.’1:idpi+Hdt)

a similar argument applied to [ (z’dp; + Hdt) shows that i = 2L gives integrability. Therefore, if the
op

family of curves, (l‘i (t),p; (t)) solve Hamilton’s equations, then evaluating the action on those curves gives
a function.

Exercise: Carry out the details of the demonstration that S becomes a function if &' = gg
Finally, suppose one of Hamilton’s equations holds, say p; = —gg. Then
B
S (:r:i,t) = / pidat — Hdt)
A
B
= / —2'dp; — H dt)
A
B
i\ | B i
= (pim )’A —/(:E dp; —Hdt)
A
so that
B
/ (wdp; — Hdt) = (pix®)|% — 5 (a't) = §(ah1)
A

where S (a?i t) is also a function. The integrability condition for S (mi, t) must hold, and we have the second
Hamilton equation, df
Therefore, the action is a function if and only if Hamilton’s equations hold.

8.2 The Hamilton-Jacobi equation

Conversely, suppose we replace the action with a function, S [x] = S (xi, t) . Then

S(xi,t) = /p,-dxifHdt
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implies

dS = p;dz' — Hdt

as ., 0S ,
-dx' + —dt = p;dx* — Hdt
ot + ot pic
so that
08
Pi = i
; oS
H (2", p;,t -
(LU y P35 ) ot
If we replace p; in the Hamiltonian, we get a differential equation for Hamilton’s principal function,
. 0S oS
Hl|z', —,t) =—F 16
<x " OxI’ ) ot (16)

This is the Hamilton-Jacobi equation. The function S satisfying the Hamilton-Jacobi equation is called
Hamilton’s principal function.

Example: Find the Hamilton-Jacobi equation for a simple harmonic oscillator Since the
Hamiltonian for the oscillator is

P o1
H= o + §lm2
the Hamilton-Jacobi equation is
1 (35)2 Ly 08
2m \ Oz 2 ot
Partial differential equations have free functions in their solutions. Thus, while
o*f  0f _0
ox?  Ot?

has the particular solution
fx,t)=ax+by+c

it has the much more general solution

f(@y)=g-(x+1t)+g+(xz—1)

for any two functions g1. We therefore expect arbitrary functions in the solution for &

8.3 The principal function as generator of a canonical transformation

o8
) 8;81 )
suggests that we may use it as a generating function for a canonical transformation, & (;1:1, T, t) =S (zl, t).
This turns out to be especially useful.

We choose a generating function with independent variables 7, 7, S0 let

f==(d"—ap) mi + S (a',t)
Then, substituting into Eq.(12) we have

Suppose we find Hamilton’s principal function, & (zi,t). Its relationship to the momentum, p; =

df = pida’ —midg' + (H' — H)dt

—(¢" = q) dm; — midg —I—@daz + 87“(1771—1- 5 dt = pidz' —md¢ +(H — H)dt
oS . S as v
axidx +8—mdm+adt = pdz’ + (¢ — q}) dm; + (H' — H) dt
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so that the independent variables are now (mi, iy t). Equating like terms we must satisfy

s

pi = O

q = 4o 87‘[’1
oS

H = H+Z
o

But we know that Hamilton’s principal function S satisfies

aS
ozt
aS
or i
oS
ot

= Pi

=0

= —H

so the first two equations are satisfied and the new Hamilton vanishes, H' = 0.
The principal function has generated a transformation to a set of canonical variables for which the
Hamiltonian vanishes! This makes Hamilton’s equations trivial:
i =
;=

SO (qi, 77]-) simply stay at their initial values, (q(i), 7r0j).
8.4 Examples

8.4.1 Example 1: Free particle

The simplest example is the case of a free particle, for which the Hamiltonian is

p
H=—
2m
and the Hamilton-Jacobi equation is
os 1 N2
o= )
Let
S=f(x)— Et

Then f(z) must satisfy

ﬁ =V2mFE
dx

and therefore
flx) = V2mExz—c
= mr—c
where ¢ is constant and we write the integration constant E in terms of the new (constant) momentum,
E= % Hamilton’s principal function is therefore

2
S(x,w,t):ww—%t—c
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Then, for a generating function of this type we have

_ o
po= or
_ s _ T,
¢ = or m
oS
H = H+—=H-EFE
o

Because F = H, the new Hamiltonian, H', is zero. This means that both ¢ and 7 are constant. The solution
for x and p follows immediately:

s
q+ —t
m
=7
We see that the new canonical variables (g, ) are just the initial position and momentum of the motion, and
therefore do determine the motion. The fact that knowing ¢ and 7 is equivalent to knowing the full motion
rests here on the fact that S generates motion along the classical path. In fact, given initial conditions (g, 7),

we can use Hamilton’s principal function as a generating function but treat 7 as the old momentum and x
as the new coordinate to reverse the process above and generate z(t) and p.

8.4.2 Example 2: Simple harmonic oscillator
For the simple harmonic oscillator, the Hamiltonian becomes

2

p 1 2
H=2 4

om 3"

and the Hamilton-Jacobi equation is

(O8N L e 08
2m \ Ox 2 ot

Setting S = f (z) — E't then

1 (df\* 1, ,
— (& - - E
2m (d:c) +2er
ar V2mE — mkx?

dx
and direct integration (see examples, below) give a solution for S,

f = /d:c\/2mE—mkw2

/ k
= V2mE 1— —22
m /dx 5 T

. k s
so with /552 = sin p we have

f = \/2mE/\/1—sin2m/%cos,udﬂ

2F
= —/0052 pdg
w
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2F 1
= —/5(1+cos2u)d,u
+ls' 2
= sin
pt 5 sin2p
( by —E;v + sin (sm x) cos (sm_1
k k
1/7 A AR
( E:v+ ok 1 2Ez>

€ln €W ¢

€

Therefore,

as before, f(x) must satisfy

and therefore

10 = [\ (5~ )

= /\/ w2 — mkx?dx

where we have set £ = Z—. Now let vmkz = wsiny. The integral is immediate:

/ V2 — mkx?dx

= cos? ydy

\/7
= + sin y cos
5 F (y y cosy)
Hamilton’s principal function is therefore

w2 . (X — x?
S ($77T,t) = m <Sln ( mk;) + m ; 1 — mkﬂ_2>
2

2

B T .1 (\/— ) 5 T

= sin k + = —mkx? — —1t
2vVmk 2 2m

and we may use it to generate the canonical change of variable.
This time we have for p,

oS

PZE

S 22 + E (772 — mkxz?) mh®
V2 —mkx2 \ 2 2 2
1 2 2
= 7%% — (71' — mkx )
= w2 — mkax?
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For ¢,

_ a8
1 on
0 w2 1 x x 2
= — sin™ \/mk7> —v7r2—mkaz? - —t—c
om (2\/mk' ! ( s + 2 T 2m
B T . ( \/—x) x T x 7r T
= sin mk—) — = + - - —t
Vmk T 2Vn2 —mka? 272 —mkz?2 m
B T . ( \/—x> 7r
= sin mk— | — —t
vVmk us m
and finally H' = H + % = H — E = 0. The first equation relates p to the energy and position, the second
gives the new position coordinate ¢, and third equation shows that the new Hamiltonian is zero. Hamilton’s

equations are trivial, so that 7 and ¢ are constant.
Solving for 7 in terms of p,

p? = w2 —mka?

™ = +/p?+ mka?

The solution for ¢ may be solved directly for x (g, ),

q = \/:Esin_1 (M%) - %t

vVmk
r = T sin mn (q—l—lt)
m m

mw’

Setting w = 1/% and A = I the initial phase is @9 = ™% and the solution is

x(t) = Asin(pg+ wt)

The new canonical coordinates therefore characterize the initial amplitude and phase of the oscillator.

8.4.3 Example 3: One dimensional particle motion

Now suppose a particle with one degree of freedom moves in a potential U(x). Little is changed. The the

Hamiltonian becomes )

g=2 .y
2m
and the Hamilton-Jacobi equation is
95 _ _ L (924 ua)
o 2m

Letting S = f(x) — Et as before, f(x) must satisfy

df
== V2m(E-U @)

and therefore

~

—
8

~—
|

[ VamE=T @
/ 7 =l (@)da
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where we have set £ = Z—. Hamilton’s principal function is therefore

1) = 2_9 T,
S (z,7,t) /\/77 mU (x)dx th c

and we may use it to generate the canonical change of variable.
This time we have

08

= —_— = 2 —

P 9 w2 —2mU (x)

0S8 0 “: ™

= — = — 2 _ _

q o o (/mo V72 =2mU (z)dz mt

oS
ro_ — —
H = H+ 2 =H-FE=0

The first and third equations are as expected, while for ¢ we may interchange the order of differentiation
and integration:

qg = 8(/\/7r22mU(x)d:c>;t
/8 w2 = 2mU (x )) xf%t

™

| e
[ =

To complete the problem, we need to know the potential. However, even without knowing U (z) we can make

sense of this result by combining the expression for ¢ above to our previous solution to the same problem.
With 72 = 2mE, he solution for ¢ may be written as

‘4 ﬁq— m/ dzx
2!\ 2F Ule
A N

There, conservation of energy gives a first integral to Newton’s second law,

2
E =L .yp
2m

1 dr\?

t

so we arrive at the familiar quadrature

E
2
2F

2B (de\T L 2y,
m dt m
2B U d
m E N
m [T dx
t—toz/dtz,/—/ —
2F o /1_%
With ¢ = —4/ %to this has the same form as the solution for q.

34



8.4.4 Example 4: Two dimensional oscillator as a central force

Suppose we have a mass fastened to a spring, moving on a tabletop, so that action is

1 ) . 1
S = / <2m (1“2 + 7"24,02) — 21{:7"2)

The canonical momenta are

pr = mr
Pp = m’rQ()b
so the Hamiltonian is
H = 1m (7'"2 + 7"2<,'02) + 114:7“2
2 2

1 2 p?p 1,5
= 7 — —k
2m <pr + r2 + 2"
The Hamilton-Jacobi equation is

(98N L (0S\ 1, oS
om \ \ ar 72 \ 9p 2" T T
Let S = f (r,¢) — Et to separate the time, so that
1 (/08\* 1 [88\*\ 1,,
m((a) +7~2<a¢)>+2’” =k

Now use separation of variables. Let
f=R({r)+2(p)

Then
dR\? 1 (d®\®
(djj) +7“2<CZSO> +kmr? = 2mE
@2% 2—2E——l@2
dr mr mes = r2 \ dy
2 2
)
—r? dr — kmrt + 2mEr? = @
dr dy

Since the left side depends only on 7 and the right only on ¢, each side must equal some constant, a?:

dR\?
—r2 () —kmr* +2mEr? —a®> = 0
dr
dg = Za
dep

We immediately integrated the equation for ®:

d=+ap+b
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To find R:

dR\ 2
—r? <dR> — kmrt +2mEr? —a®> = 0
,
d 1
am - “V2mEr? — kmrt — a2
dr r
d
R = /—T\/QmErz—kmr4—a2
d
= r T\/2mE7’2 kmrt —a?
Let z = 72,
1 [d
R = 3 —Z\/QmEszmZQfaQ
z

Complete the square

E > E?
2mEz — kmz* —a® = — (m - kmz> +— —a
vVkm w

where w = \/% Then setting y = Vkmz — m—%, so that —Z? + 7;?75 =2z

" E)V(fj“ﬁ)‘yg

vkm+k

<y (E)

Now let y = \/%Sirﬂ
1 dy E2
R = */ \/?cos&
2 \/@sine—f—g w

= 3 cos
2 sinf + ——=——

(E2,a2 2
2 ﬁ 0
= 0 — a tan71 & (tan <> + 1)
a2 —1 \/T 2
B2 _a2u2
2a 0
= 0-— tan~ tan [ =
a?—1 2

- g— 2a tan~! (atan(g) a)

a?—1 a?—1
where )y
gl (W E
f = sin ( —— a2w2>
Then

S=R(r)+ap—Et
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9 Quantum Mechanics and the Hamilton-Jacobi equation

The Hamiltonian-Jacobi equation provides the most direct link between classical and quantum mechanics.
There is considerable similarity between the Hamilton-Jacobi equation and the Schrédinger equation:

oS oS
E = _H(.’Ifwai‘u,t)
oy
zha = H(Z;,pit)

We make the relationship precise as follows.
Suppose the Hamiltonian in each case is that of a single particle in a potential:

p2

H=—
oy TV ()
Write the quantum wave function as v
= Aen¥
The Schrodinger equation becomes
0 (Aerv 2 v .
mi( o ) = —;—m V2 (4et#) + v (Acke)
L 0A 4 i, 0p 12 i T, i i
ke o 0 . © A @ @
zhateh Aen Y va (eh VA+hAeh ch)—i—VAeh
R i, (i
= ——eh? ( v«va+v2A)
2m h
R i, (i i 9
“om " <FLVA‘V90+EAV <P>
R o(i\? .
“om <h) er? (A ¢-vep)
+V Aeh?
Then cancelling the exponential,
: 2

ot ot om om
ih ih
—5 VA ve-—AVp
m 2m
1
to (Avp-ve)+VA
m

Collecting by powers of A,

Op 1
0y . _99 _ )
O(r) : —gr=5-Ve VetV
o, oA 12, 2
O(W) « Gor= 5|7 VA VetV

2 h? 2

The zeroth order terms is the Hamilton-Jacobi equation, with ¢ = S:

oS 1

"o T g VSTV
— 1 2
= o TV
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where p = 7S. Therefore, the Hamilton-Jacobi equation is the A — 0 limit of the Schrédinger equation.

p2
HY = Ty 4V (@)
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