Two tricks

September 11, 2018

1 Trick number one

Recall the variation of a general action of the form

$$
S=\int L\left(q_{i}, \dot{q}_{i}, t\right)
$$

Varying by computing $\left.\left(S\left[q_{i}+\delta q_{i}\right]-S\left[q_{i}\right]\right)\right|_{\text {linear order }}$ where $\delta q_{i}(t)$ is arbitrary (it is the $h(t)$ we used before, but δq_{i} is more suggestive here) we find

$$
\begin{aligned}
\delta S\left[q_{1}, q_{2}, \ldots, q_{N}\right] & =\left.\left(S\left[q_{i}+h_{i}\right]-S\left[q_{i}\right]\right)\right|_{\text {linear order }} \\
& =\int L\left(q_{i}+\delta q_{i}, \dot{q}_{i}+\delta \dot{q}_{i}, t\right)-\left.\int L\left(q_{i}, \dot{q}_{i}, t\right)\right|_{\text {linear order }}
\end{aligned}
$$

Expanding the first integrand in a Taylor series to first order

$$
L\left(q_{i}+\delta q_{i}, \dot{q}_{i}+\delta \dot{q}_{i}, t\right)_{\text {linear order }} \left\lvert\,=L\left(q_{i}, \dot{q}_{i}, t\right)+\frac{\partial L}{\partial q_{i}}\left(q_{i}, \dot{q}_{i}, t\right) \delta q_{i}+\frac{\partial L}{\partial \dot{q}_{i}}\left(q_{i}, \dot{q}_{i}, t\right) \delta \dot{q}_{i}\right.
$$

Then the variation is

$$
\begin{aligned}
\delta S\left[q_{1}, q_{2}, \ldots, q_{N}\right] & =\int\left(L\left(q_{i}, \dot{q}_{i}, t\right)+\frac{\partial L}{\partial q_{i}}\left(q_{i}, \dot{q}_{i}, t\right) \delta q_{i}+\frac{\partial L}{\partial \dot{q}_{i}}\left(q_{i}, \dot{q}_{i}, t\right) \delta \dot{q}_{i}\right)-\int L\left(q_{i}, \dot{q}_{i}, t\right) \\
& =\int\left(\frac{\partial L}{\partial q_{i}} \delta q_{i}+\frac{\partial L}{\partial \dot{q}_{i}} \delta \dot{q}_{i}\right)
\end{aligned}
$$

Note the similarity between this integrand and the total differential of L :

$$
d L=\frac{\partial L}{\partial q_{i}} d q_{i}+\frac{\partial L}{\partial \dot{q}_{i}} d \dot{q}_{i}+\frac{\partial L}{\partial t} d t
$$

Because of this, all we need to do to find the variation is to think of it as taking the differential, with the simple replacements

$$
\begin{aligned}
d q_{i} & \rightarrow \delta q_{i} \\
d \dot{q}_{i} & \rightarrow \frac{d}{d t}\left(\delta q_{i}\right) \\
d t & \rightarrow \delta t=0
\end{aligned}
$$

where δt vanishes because we only vary the path, not the time.
Example: Consider the first problem, where you are asked to vary

$$
S=\int\left(\frac{1}{2} m\left(a \dot{x}^{2}+2 b \dot{x} \dot{y}+c \dot{y}^{2}\right)-\frac{1}{2} K\left(a x^{2}+2 b x y+c y^{2}\right)\right) d t
$$

The differential of the integrand is

$$
\begin{aligned}
d\left(\frac{1}{2} m\left(a \dot{x}^{2}+2 b \dot{x} \dot{y}+c \dot{y}^{2}\right)-\frac{1}{2} K\left(a x^{2}+2 b x y+c y^{2}\right)\right)= & \frac{1}{2} m(2 a \dot{x} d \dot{x}+2 b \dot{y} d \dot{x}+2 b \dot{x} d \dot{y}+2 c \dot{y} d \dot{y}) \\
& -\frac{1}{2} K(2 a x d x+2 b y d x+2 b x d y+2 c y d y)
\end{aligned}
$$

so the variation of the action is

$$
\begin{aligned}
\delta S= & \int \frac{1}{2} m(2 a \dot{x} \delta \dot{x}+2 b \dot{y} \delta \dot{x}+2 b \dot{x} \delta \dot{y}+2 c \dot{y} \delta \dot{y}) d t \\
& -\int \frac{1}{2} K(2 a x \delta x+2 b y \delta x+2 b x \delta y+2 c y \delta y) d t
\end{aligned}
$$

2 Trick number two

The next step in the variation is to integrate the velocity variations by parts. This can be streamlined. For the first term in δS above:

$$
\begin{aligned}
\int_{t_{1}}^{t_{2}} m a \dot{x} \delta \dot{x} & =\int_{t_{1}}^{t_{2}} \frac{d}{d t}(m a \dot{x} \delta x)-\int_{t_{1}}^{t_{2}} \frac{d}{d t}(m a \dot{x}) \delta x \\
& =m a \dot{x}\left(t_{2}\right) \delta x\left(t_{2}\right)-m a \dot{x}\left(t_{1}\right) \delta x\left(t_{1}\right)-\int_{t_{1}}^{t_{2}} \frac{d}{d t}(m a \dot{x}) \delta x \\
& =-\int_{t_{1}}^{t_{2}} m a \ddot{x} \delta x
\end{aligned}
$$

The net result is simply the replacement under the integral sign,

$$
m a \dot{x} \delta \dot{x} \rightarrow-m a \ddot{x} \delta x
$$

that is, throw the dot from the $\delta \dot{x}$ onto the rest of the expression and change the sign.
If we use this trick, then after canceling the $\frac{1}{2} \times 2$ factorswe can immediately write δS as

$$
\begin{aligned}
\delta S= & \int m(a \ddot{x} \delta x+b \ddot{y} \delta x+b \ddot{x} \delta y+c \ddot{y} \delta y) d t \\
& -\int K(a x \delta x+b y \delta x+b x \delta y+c y \delta y) d t
\end{aligned}
$$

Now collect terms in δx and δy separately because the two variations are independent. We can hold x or y fixed while varying the other. We find

$$
\begin{aligned}
\delta S= & \int(m(a \ddot{x}+b \ddot{y})-K(a x+b y)) \delta x d t \\
& +\int(m(b \ddot{x}+c \ddot{y})-K(b x+c y)) \delta y d t
\end{aligned}
$$

and the equations of motion are

$$
\begin{aligned}
m(a \ddot{x}+b \ddot{y})-K(a x+b y) & =0 \\
m(b \ddot{x}+c \ddot{y})-K(b x+c y) & =0
\end{aligned}
$$

