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Chapter 3

The Action Functional

3.1 Functionals
Informed discussion of Lagrangian methods is helped by introducing the idea of a functional. To understand
it, think of a function, f (x), as a mapping from the reals to the reals,

f : R −→ R

that is, given one real number, x, the functions hands us another real number, f (x). This generalizes readily
to functions of several variables, for example, f (x) is a map from R3 to R while the electric field E (x, t)
maps E : R4 −→ R3, since each choice of four coordinates (x, y, z, t) gives us three unique components of
the electric field at that point.

In integral expressions, we meet a different sort of mapping. Consider

F [x (t)] =

t2ˆ

t1

x (t) dt

where we introduce square brackets, [ ], to indicate that F is a functional. Given any function x (t), the
integral will give us a definite real number, but now we require the entire function, x (t), to compute it.
Define F to be a function space, in this case the set of all integrable functions x (t) on the interval [t1, t2].
Then F is a mapping from this function space to the reals,

F : F −→ R

Over the course of the twentieth century, functionals have played an increasingly important role. Introduced
by P. J. Daniell in 1919, functionals were used by N. Weiner over the next two years to describe Brownian
motion. Their real importance to physics emerged with R. Feynman’s path integral formulation of quantum
mechanics in 1948 based on Dirac’s 1933 use of the Weiner integral.

We will be interested in one particular functional, called the action or action functional, given for the
Newtonian mechanics of a single particle by

S [x (t)] =

t2ˆ

t1

L (x, ẋ, t) dt

where the Lagrangian, L (x, ẋ, t), is the difference between the kinetic and potential energies,

L (x, ẋ, t) = T − V
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3.2 Some historical observations
At the time of the development of Lagrangian and Hamiltonian mechanics, and even into the 20th century, the
idea of a uniquely determined classical path was deeply entrenched in physicists’ thinking about motion. The
great deterministic power of the idea underlay the industrial age and explained the motions of planets. It is
not surprising that the probabilistic preditions of quantum mechanics were strongly resisted1 but experiment
- the ultimate arbiter - decrees in favor of quantum mechanics.

This strong belief in determinism made it difficult to understand the variation of the path of motion
required by the new approaches to classical mechanics. The idea of “varying a path” a little bit away from
the classical solution simply seemed unphysical. The notion of a “virtual displacement” dodges the dilemma
by insisting that the change in path is virtual, not real.

The situation is vastly different now. Mathematically, the development of functional calculus, including
integration and differentiation of functionals, gives a language in which variations of a curve are an integral
part. Physically, the path integral formulation of quantum mechanics tells us that one consistent way of un-
derstanding quantum mechanics is to think of the quantum system as evolving over all paths simultaneously,
with a certain weighting applied to each and the classical path emerging as the expected average. Classical
mechanics is then seen to emerge as this distribution of paths becomes sharply peaked around the classical
path, and therefore the overwhelmingly most probable result of measurement.

Bearing these observations in mind, we will take the more modern route and ignore such notions as
“virtual work”. Instead, we seek the extremum of the action functional S [x (t)]. Just as the extrema of a
function f (x) are given by the vanishing of its first derivative, df

dx = 0, we ask for the vanishing of the first
functional derivative,

δS [x (t)]

δx (t)
= 0

Then, just as the most probable value of a function is near where it changes most slowly, i.e., near extrema,
the most probable path is the one giving the extremum of the action. In the classical limit, this is the only
path the system can follow.

3.3 Variation of the action and the functional derivative
For classical mechanics, we do not need the formal definition of the functional derivative, which is given
in Not so Classical Mechanics for anyone interested in the rigorous details. Instead, we make use of the
extremum condition above and use our intuition about derivatives. The derivative of a function is given by

df

dx
= lim
ε→0

f (x+ ε)− f (x)
ε

Notice that the limit removes all but the part of the numerator linear in ε, f (x+ ε)−f (x) =
(
f (x) + ε dfdx + 1

2ε
2 d

2f
dx2 + · · ·

)
−

f (x)⇒
(
f (x) + ε dfdx

)
−f (x). The function at x cancels and we are left with the derivative. If the derivative

vanishes, we do not need the dx part, but only

df = (f (x+ dx)− f (x))|linear order = 0

where we have set ε = dx. Applying the same logic to the vanishing functional derivative, we require

δS [x (t)] ≡ (S [x (t) + δx (t)]− S [x (t)])|linear order = 0

δS is called the variation of the action, and δx (t) is an arbitrary variation of the path. Thus, if x (t) is
one path in the xt-plane, x (t) + δx (t) is another path in the plane that differs slightly from the first. The

1Einstein’s frustration is captured in his assertion to Cornelius Lanczos, “ . . . dass [Herrgott] würfelt . . . kann ich keinen
Augenblick glauben.” (I cannot believe for an instant that God plays dice [with the world]). He later abbreviated this in
conversations with Niels Bohr, “Gott würfelt nicht. . .”, God does not play dice. Bohr replied that it is not for us to say how
God chooses to run the universe. See http://de.wikipedia.org/wiki/Gott_würfelt_nicht
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variation δx is required to vanish at the endpoints, δx (t1) = δx (t2) = 0 so that the two paths both start
and finish in the same place at the same time.

In defining the variation in this way, we avoid certain subtleties arising from places where the paths cross
and δx (t) = 0, and also the formal need to allow δx to be completely arbitrary rather than always small.
The variation is sufficient for our purpose.

Now consider the actual form of the variation when the action is given by

S [x (t)] =

t2ˆ

t1

L (x, ẋ, t) dt

with L (x, ẋ, t) = T −V . For a single particle in a position-dependent potential V (x), the action is given by

S [x (t)] =

t2ˆ

t1

(
1

2
mẋ2 − V (x)

)
dt

and setting δx (t) = h (t), so we need to find (S [x+ h]− S [x])|linear order. Since we require both paths,
x (t) and x (t) + h (t), to go between the same endpoints at t1 and t2, we must have h (t1) = h (t2) = 0.

The vanishing variation gives

0 = δS [x (t)]

= (S [x+ h]− S [x])|linear order

=

t2ˆ

t1

dt

((
1

2
m
(
ẋ+ ḣ

)2
− V (x+ h)

)
−
(
1

2
mẋ2 − V (x)

))∣∣∣∣∣∣
linear order

=

t2ˆ

t1

dt

((
1

2
m
(
ẋ2 + 2ẋ · ḣ+ ḣ2

)
− V (x+ h)

)
−
(
1

2
mẋ2 − V (x)

))∣∣∣∣∣∣
linear order

Now we drop the small quadratic term, ḣ2, cancel the kinetic energy 1
2mẋ2 along the original path x (t),

and expand the potential in a Taylor series,

0 =

t2ˆ

t1

dt
(
mẋ · ḣ− V (x+ h) + V (x)

)∣∣∣∣∣∣
linear order

=

t2ˆ

t1

dt
(
mẋ · ḣ−

(
V (x) + h ·∇V (x) +O

(
h2
)
+ . . .

)
+ V (x)

)∣∣∣∣∣∣
linear order

=

t2ˆ

t1

dt
(
mẋ · ḣ− h ·∇V (x)

)
Our next goal is to rearrange this so that only the arbitrary vector h appears as a linear factor, and not its
derivative. We integrate by parts. Using the product rule to write

d

dt
(mẋ · h) = mẍ · h+mẋ · ḣ

and solving for the term, mẋ · ḣ, that we actually have, mẋ · ḣ = d
dt (mẋ · h)−mẍ ·h, the vanishing variation

of the action implies

0 =

t2ˆ

t1

dt

(
d

dt
(mẋ · h)−mẍ · h− h ·∇V (x)

)
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= mẋ (t2) · h (t2)−mẋ (t1) · h (t1)−
t2ˆ

t1

dt (mẍ+∇V (x)) · h

= −
t2ˆ

t1

dt (mẍ+∇V (x)) · h

since h (t2) = h (t1) = 0.
Finally, suppose the integrand, except h (t) is nonvanishing at some point x (t′). Then, since the integral

must vanishing for all h (t), consider a choice of h parallel to the direction of (mẍ+∇V (x)) and nonvanishing
only in an infinitesimal region about x (t′). Then the integral is approximately

|mẍ (t′) +∇V (x (t′))|h (t′) > 0

This is a contradiction, so mẍ (t′) + ∇V (x (t′)) = 0. Since the point x (t′) was arbitrary, the expression
must vanish at every point by the same argument, and we have

mẍ = −∇V (x)

This is Newton’s second law where the force is derived from the potential V .

3.4 The Euler-Lagrange equation
For many particle systems, we may write the action as a sum over all of the particles. However, there are
vast simplifications that occur. For example, in a rigid body containing many times Avogadro’s number of
particles, the rigidity constraint reduces the number of degrees of freedom to just six - three to specify the
position of the center of mass, and three more to specify the direction and magnitude of rotation about this
center. More generally, the use of general coordinates and constraints may give expressions only vaguely
reminiscent of the single particle kinetic and potential energies. Therefore, it is useful to take a general
approach, supposing the Lagrangian to depend on N generalized coordinates qi, their velocities, q̇i, and
time. We take the potential to depend only on the positions, not the velocities or time, so that

L (qi, q̇i, t) = T (qi, q̇i, t)− V (qi)

Despite the generality of this form, we may find the extrema of the action, which are the equations of motion
in the coordinates qi.

Carrying out the variation as before, the ith position coordinate may change by an amount hi (t), which
vanishes at t1 and t2. Following the same steps as for the single particle, vanishing variation gives,

0 = δS [q1, q2, . . . , qN ]

= (S [qi + hi]− S [qi])|linear order

=

t2ˆ

t1

dt
(
T
(
qi + hi, q̇i + ḣi, t

)
− V (qi + hi)− (T (qi, q̇i, t)− V (qi))

)∣∣∣∣∣∣
linear order

=

t2ˆ

t1

dt

((
T (qi, q̇i, t) +

N∑
i=1

hi
∂T

∂qi
+

N∑
i=1

ḣi
∂T

∂q̇i
− V (qi)−

N∑
i=1

hi
∂V

∂qi

)
− (T (qi, q̇i, t)− V (qi))

)∣∣∣∣∣∣
linear order

=

N∑
i=1

t2ˆ

t1

dt

(
hi
∂T

∂qi
+ ḣi

∂T

∂q̇i
− hi

∂V

∂qi

)
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where the Taylor series to first order of a function of more than one variable contains the linear term for
each,

f (x+ ε, y + δ) = f (x, y) + ε
∂f

∂x
+ δ

∂f

∂y
+ higher order terms

The center term contains the change in velocities, so we integrate by parts,

N∑
i=1

t2ˆ

t1

dt ḣi
∂T

∂q̇i
=

N∑
i=1

t2ˆ

t1

dt

(
d

dt

(
hi
∂T

∂q̇i

)
− hi

d

dt

(
∂T

∂q̇i

))

=

N∑
i=1

(
hi (t2)

∂T

∂q̇i
(t2)− hi (t1)

∂T

∂q̇i
(t1)

)
−

N∑
i=1

t2ˆ

t1

dt hi
d

dt

(
∂T

∂q̇i

)

= −
N∑
i=1

t2ˆ

t1

dt hi
d

dt

(
∂T

∂q̇i

)
The full expression is now,

0 =

N∑
i=1

t2ˆ

t1

dt hi

(
∂T

∂qi
− d

dt

(
∂T

∂q̇i

)
− ∂V

∂qi

)

=

N∑
i=1

t2ˆ

t1

dt hi

(
∂L

∂qi
− d

dt

(
∂L

∂q̇i

))

where L = T − V and we use ∂V
∂q̇i

= 0 to replace T with L in the velocity derivative term. Now, since each
hi is independent of the rest and arbitrary, each term in the sum must vanish separately. The result is the
Euler-Lagrange equation,

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (3.1)

3.5 General coordinate covariance of the Euler Lagrange equations
Here we show that the Euler-Lagrange equation is covariant under general coordinate transformations. By
this we mean that if the Euler-Lagrange equation

Vi (x) ≡
d

dt

∂L

∂ẋi
− ∂L

∂xi
= 0

is satisfied in one set of coordinates, xi, then it will hold in any other, yi,

Vi (y) ≡
d

dt

∂L

∂ẏi
− ∂L

∂yi
= 0

where xi
(
yj
)
is the invertible coordinate transformation. For the two vectors to vanish together requires

there to be a linear map from one to other, i.e., there exists some J j
i such that Vi =

∑
j J

j
i Vj , or(

d

dt

∂L

∂ẋi
− ∂L

∂xi

)
=

N∑
j=1

J j
i

(
d

dt

∂L

∂ẏj
− ∂L

∂yj

)
It is clear what J j

i must be – if L is independent of velocity, we require

∂L

∂xi
=

N∑
j=1

J j
i

∂L

∂yj
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but the chain rule tells us that
∂L

∂xi
=

N∑
j=1

∂yj

∂xi
∂L

∂yj

Therefore, J j
i is the Jacobian matrix of the coordinate transformation, ∂yj

∂xi . In conclusion, the Euler-
Lagrangian equation hold in any coordinate system if and only if

d

dt

∂L

∂ẋi
− ∂L

∂xi
=

N∑
j=1

∂yj

∂xi

(
d

dt

∂L

∂ẏj
− ∂L

∂yj

)
(3.2)

for any two, xi → yi.
We prove that this is the case by deriving the relationship between the Euler-Lagrange equation for xi (t)

and the Euler-Lagrange equation for yi (t).
Consider the variational equation for yi, computed in two ways. Since the action may be written as either

S
[
xi
]
or S

[
yi
]
, we have

S
[
yi
]
= S

[
xi
(
yk
)]

First, we may immediately write the Euler-Lagrange equation by varying S
[
yi (t)

]
. Following the steps that

led us to Eq.(3.1), that is, varying and integrating by parts, we have

δS = δ

ˆ
C

L
(
yi, ẏi, t

)
dt

=

N∑
k=1

ˆ
C

(
∂L

∂yk
δyk +

∂L

∂ẏk
δẏk
)
dt

=

N∑
k=1

ˆ
C

(
∂L

∂yk
− d

dt

(
∂L

∂ẏk

))
δykdt

as expected. Now compare this to what we get by varying S
[
xi
(
yk
)]

with respect to yi (t):

0 = δS

= δ

ˆ
C

L
(
xi
(
yk, t

)
, ẋi
(
yk, ẏk, t

))
dt

=

N∑
i,k=1

ˆ
C

(
∂L

∂xk

(
∂xk

∂yi
δyi +

∂xk

∂ẏi
δẏi
)
+

∂L

∂ẋk

(
∂ẋk

∂yi
δyi +

∂ẋk

∂ẏi
δẏi
))

dt (3.3)

Since xi is a function of yk and t only, ∂x
k

∂ẏi = 0 and the second term in the first parentheses vanishes.
Now we need two identities. Explicitly expanding the velocity, ẋk, the chain rule gives:

ẋk =
dxk

dt

=
d

dt
xk
(
yi (t) , t

)
=

∂xk

∂yi
ẏi +

∂xk

∂t
(3.4)

so differentiating, we have one identity,
∂ẋk

∂ẏi
=
∂xk

∂yi
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For the second identity, we differentiate eq.(3.4) for the velocity with respect to yi :

∂ẋk

∂yi
=

∂2xk

∂yi∂yj
ẏj +

∂2xk

∂yi∂t

=
∂

∂yj

(
∂xk

∂yi

)
ẏj +

∂

∂t

(
∂xk

∂yi

)
=

d

dt

∂xk

∂yi

Now return and substitute into the variation

0 = δS

=

N∑
i,k=1

ˆ
C

(
∂L

∂xk

(
∂xk

∂yi
δyi +

∂xk

∂ẏi
δẏi
)
+

∂L

∂ẋk

(
∂ẋk

∂yi
δyi +

∂ẋk

∂ẏi
δẏi
))

dt

=

N∑
i,k=1

ˆ
C

(
∂L

∂xk
∂xk

∂yi
δyi +

∂L

∂ẋk

(
d

dt

∂xk

∂yi
δyi +

∂xk

∂yi
δẏi
))

dt

=

N∑
i,k=1

ˆ
C

(
∂L

∂xk
∂xk

∂yi
δyi +

∂L

∂ẋk

(
d

dt

∂xk

∂yi
δyi +

∂xk

∂yi
d

dt
δyi
))

dt

=

N∑
i,k=1

ˆ
C

(
∂L

∂xk
∂xk

∂yi
δyi +

∂L

∂ẋk
d

dt

(
∂xk

∂yi
δyi
))

dt

Finally, integrate the final term by parts,

N∑
i,k=1

ˆ
C

∂L

∂ẋk
d

dt

(
∂xk

∂yi
δyi
)
dt =

N∑
i,k=1

ˆ
C

(
d

dt

(
∂L

∂ẋk
∂xk

∂yi
δyi
)
− d

dt

(
∂L

∂ẋk

)
∂xk

∂yi
δyi
)
dt

=

N∑
i,k=1

((
∂L

∂ẋk
∂xk

∂yi
δyi
)
final

−
(
∂L

∂ẋk
∂xk

∂yi
δyi
)
initial

)
dt−

N∑
i,k=1

ˆ
C

d

dt

(
∂L

∂ẋk

)
∂xk

∂yi
δyidt

=

N∑
i,k=1

ˆ
C

(
− d

dt

(
∂L

∂ẋk

)
∂xk

∂yi
δyi
)
dt

where δyi vanishes at the endpoints. The vanishing variation now becomes

0 =

N∑
i,k=1

ˆ
C

(
∂L

∂xk
− d

dt

(
∂L

∂ẋk

))
∂xk

∂yi
δyidt

The initial equality of the two forms of the action, S
[
yi
]
= S

[
xi
(
yk
)]

implies δS
[
yi
]
= δS

[
xi
(
yk
)]

and therefore
N∑
k=1

ˆ
C

(
∂L

∂yk
− d

dt

(
∂L

∂ẏk

))
δykdt−

N∑
i,k=1

ˆ
C

(
∂L

∂xk
− d

dt

(
∂L

∂ẋk

))
∂xk

∂yi
δyidt = 0

N∑
k=1

ˆ
C

[(
∂L

∂yk
− d

dt

(
∂L

∂ẏk

))
−
(
∂L

∂xk
− d

dt

(
∂L

∂ẋk

))
∂xk

∂yi

]
δyidt = 0

and the independence and arbitrariness of the variation, δyi implies covariance:(
∂L

∂yk
− d

dt

(
∂L

∂ẏk

))
=

(
∂L

∂xk
− d

dt

(
∂L

∂ẋk

))
∂xk

∂yi
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The conclusion we reach is that no matter what coordinates qi we choose for a problem, we may always
write the equation of motion as

∂L

∂qk
− d

dt

(
∂L

∂q̇k

)
= 0

The same is true of the action. Rather than writing the Euler-Lagrange equation, we may write the action
as the integral of the Lagrangian and write the Lagrangian in terms of whatever coordinates we choose,

S
[
qi
]
=

t2ˆ

t1

L
(
qi, q̇i, t

)
dt

Varying this with respect to the qi will give the correct form of the equations.

3.6 Noether’s Theorem
There are important general properties of Euler-Lagrange systems based on the symmetry of the Lagrangian.
The most important symmetry result is Noether’s Theorem, which we prove below. We then apply the
theorem in several important special cases to find conservation of momentum, energy and angular momentum.

3.7 Noether’s theorem for the Euler-Lagrange equation
Symmetries may be either discrete or continuous. Discrete symmetries like parity, time reversal, or the four
rotations of a square, have only a finite number of possible transformations. By a continuous symmetry,
we mean a symmetry dependent upon a real, continuous parameter such as a rotation through an angle θ,
where θ may be any number between 0 and 2π.

In essence, Noether’s theorem states that when an action has a continuous symmetry, we can derive a
conserved quantity. To prove the theorem, we need clear definitions of a conserved quantity and of what we
mean by a symmetry.

Def: Conserved quantities We have shown that the action

S [x (t)] =

ˆ
C

L
(
xi, ẋi, t

)
dt

is extremal when xi (t) satisfies the Euler-Lagrange equation,

∂L

∂xi
− d

dt

∂L

∂ẋi
= 0 (3.5)

This condition guarantees that δS vanishes for all variations, xi (t) → xi (t) + δxi (t) which vanish at the
endpoints of the motion. Let xi (t) be a solution to the Euler-Lagrange equation, eq.(3.5) of motion. Then
a function of xi (t) and its time derivatives,

f
(
xi (t) , ẋi (t) . . . ,

)
is conserved if it is constant along the paths of motion,

df

dt

∣∣∣∣
xi(t)

= 0

10



Definition: Symmetry of the action Sometimes it is the case that δS vanishes for certain limited
variations of the path without imposing any condition at all. When this happens, we say that S has a
symmetry :

A symmetry of an action functional S [x] is a transformation of the path, xi (t)→ λi
(
xj (t) , t

)
that leaves

the action invariant,
S
[
xi (t)

]
= S

[
λi
(
xj (t) , t

)]
regardless of the path of motion xi (t). In particular, when λi (x) represents a continuous transformation of
x2, we may expand the transformation infinitesimally, so that

xi → x′i = xi + εi (x)

δxi = x′i − xi = εi (x)

Since the infinitesimal transformation must leave S [x] invariant, we have

δεS = S
[
xi + εi (x)

]
− S

[
xi
]
= 0

whether x (t) satisfies the field equations or not. If an infinitesimal transformation is a symmetry, we may
apply arbitrarily many infinitesimal transformations to recover the invariance of S under finite transforma-
tions. Here λ(x) is a particular function of the coordinates. This is quite different from performing a general
variation – we are not placing any new demand on the action, just noticing that particular transformations
do not change it. Notice that neither λi nor εi is required to vanish at the endpoints of the motion.

We are now in a position to prove Noether’s theorem. Note that we carefully distinguish between the
symmetry variation δε and a general variation δ.

Theorem (Noether): Suppose an action dependent on N independent functions xi (t), i = 1, 2, . . . , N
has a continuous symmetry so that it is invariant under

δεx
i = x′i − xi = εi (x)

where εi (x) are fixed functions of xi (t). Then the quantity

I =
∂L (x (λ))

∂ẋi
εi (x)

is conserved.

Proof: The existence of a symmetry means that

0 ≡ δεS [x (t)]

≡
N∑
i=1

ˆ t2

t1

(
∂L (x (t))

∂xi
εi (x) +

(
∂L (x (t))

∂ẋi(n)

)
dεi (x)

dt

)
dt

Notice that δεS vanishes identically because the action of δε is a symmetry. No equation of motion has been
used. Integrating the second term by parts we have

0 =

ˆ (
∂L

∂xi
εi(x) +

d

dt

(
∂L

∂ẋi
εi(x)

)
− d

dt

(
∂L

∂ẋi

)
εi(x)

)
dt

=
∂L

∂ẋi
εi(x)

∣∣∣∣t2
t1

+

ˆ (
∂L

∂xi
− d

dt

(
∂L

∂ẋi

))
εi(x)dt

2Technically, what we mean here is a Lie group of transformations, but the definition of a group lines up well with our
intuition of symmetry. Groups are sets closed under an operation which has an identity, inverses and is associative. For
symmetries, each transformation leaves the action invariant, so the combination of any two does as well, showing closure. The
identity is just no transformation at all, inverses are just undoing the transformation we’ve just done, and associativity is natural
if you can picture it – compounding three transformations ABC it doesn’t matter whether we find the effect of D = AB and
then find DC, or if we find E = BC first then look at the effect of AE. It just means the symmetry transformation ABC is
well-defined no matter which way we compute it, as long as we keep the original order.
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This expression vanishes for every path. Now suppose xi (t) is a solution to the Euler-Lagrange equation of
motion,

∂L

∂xi
− d

dt

(
∂L

∂ẋi

)
= 0

Then along any such classical path xi (t), the integrand vanishes and it follows that

0 = δS [x]

=
∂L

∂ẋi
εi (x (t))

∣∣∣∣t2
t1

= I (t2)− I (t1)

for any two end times, t1, t2. Therefore,
dI

dt
= 0

and
I =

∂L (x, ẋ)

∂ẋi
εi (x)

is a constant of the motion.

3.8 Examples of conserved quantities in Euler-Lagrange systems

3.8.1 Cyclic coordinates and conjugate momentum
We begin this section with some definitions.

Def: Cyclic coordinate A coordinate, q, is cyclic if it does not occur in the Lagrangian, i.e.,

∂L

∂q
= 0

For example, in the spherically symmetric action

S [r, θ, ϕ] =

t2ˆ

t1

[
1

2
m
(
ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2

)
− V (r)

]
dt

all three velocities
(
ṙ, θ̇, ϕ̇

)
are present and the coordinates (r, θ) are present, but ∂L

∂ϕ = 0. Therefore, ϕ is
cyclic.

Def: Conjugate momentum The conjugate momentum, p, to any coordinate q is defined to be

p ≡ ∂L

∂q̇

For a single particle in any coordinate-dependent potential, V (x), the action may be written as

S [x] =

t2ˆ

t1

[
1

2
mẋ2 − V (x)

]
dt

so the momenta conjugate to the three coordinates xi are

pi =
∂L

∂ẋi
= mẋi

12



reproducing the familiar expression for the momentum of a particle.
The conjugate momentum for a particle is not always simply mv. If the particle moves in a velocity

dependent potential, the form changes. The principal example of this is the Lorentz force law,

F = q (E+ ẋ×B)

which follows from the velocity-dependent potential

V (x, ẋ) = qφ (x)− qẋ ·A (x)

where B = ∇ ×A. Check this. The action, is S [x] =
´ t2
t1

[
1
2mẋ2 − qφ+ qẋ ·A

]
dt, so we see immediately

differentiate to find the conjugate momentum

πi =
∂L

∂ẋi
= mẋi + qAi

so that the momentum conjugate to xi is
π = mẋ+ qA

To check the equation of motion, we vary:

0 = δS [x]

=

t2ˆ

t1

[
mẋ · δẋ− q∇φ · δx+ qδẋ ·A+ qẋ ·

∑
i

∂A

∂xi
δxi

]
dt

=

t2ˆ

t1

[
−mẍ · δx− q∇φ · δx− qδx · Ȧ+ qẋ ·

∑
i

∂A

∂xi
δxi

]
dt

where we have discarded the surface term from integrating the velocity variation by parts. Note that the final
term contains a double sum, so we need the explicit summation rather than a second dot product. Then,
extracting the variation δxi, we expand the total time derivative of the vector potential. Since A = A

(
xi, t

)
with no velocity dependence, we have

0 =
∑
i

t2ˆ

t1

[
−mẍi − q

∂φ

∂xi
− q dAi

dt
+ qẋ · ∂A

∂xi

]
δxidt

=
∑
i

t2ˆ

t1

−mẍi − q ∂φ
∂xi
− q

∂Ai
∂t

+
∑
j

∂Ai
∂xj

ẋj

+ q
∑
j

ẋj
∂Aj
∂xi

 δxidt
Now regroup,

0 =
∑
i

t2ˆ

t1

−mẍi − q( ∂φ
∂xi

+
∂Ai
∂t

)
+ q

∑
j

ẋj
(
∂Aj
∂xi
− ∂Ai
∂xj

) δxidt
The term in brackets must vanish, and we recognize

(
∂Aj

∂xi − ∂Ai

∂xj

)
as the components of the curl and the

final sum as the cross product of the curl with ẋi. Then

mẍ = q (E+ ẋ×B)

Exercise: Expand ẋ × B in terms of components of the velocity, where B = ∇ ×A to show that the ith
component is

[ẋ×B]i =
∑
j

ẋj
(
∂Aj
∂xi
− ∂Ai
∂xj

)

13



3.8.2 Cyclic coordinates and conserved momentum
We have the following consequences of a cyclic coordinate.

Theorem: Cyclic coordinates If a coordinate q is cyclic then the momentum conjugate to q is conserved.

Proof: This follows immediately from Noether’s theorem, since, if L is independent of q it is unchanged by
replacing q with a translation q′ = q + a for any constant a. The action is therefore invariant under
δq = a and Noether’s theorem gives the conserved quantity

I =
∂L (x, ẋ, q̇)

∂q̇
ε (x)

=
∂L (x, ẋ, q̇)

∂q̇
a

But pq ≡ ∂L(x,ẋ,q̇)
∂q̇ is the momentum conjugate to q and a is constant, so pq is conserved.

3.8.3 Translational invariance and conservation of momentum
Now consider full translational invariance. We look first at a single particle, then at many particles.

Suppose the action for a 1-particle system is invariant under arbitrary finite translations,

x̃i = xi + ai

or infinitesimally, letting ai → εi,
δxi = x̃i − xi = εi

We may express the invariance of S under δxi = εi explicitly,

0 = δεiS

=
∑
i

ˆ t2

t1

(
∂L

∂xi
δxi +

∂L

∂ẋi
δẋi
)
dt

=
∑
i

ˆ t2

t1

(
∂L

∂xi
δxi +

d

dt

(
∂L

∂ẋi
δxi
)
− d

dt

(
∂L

∂ẋi

)
δxi
)
dt

=
∑
i

∂L

∂ẋi
εi

∣∣∣∣∣
t2

t1

+
∑
i

ˆ t2

t1

(
∂L

∂xi
− d

dt

(
∂L

∂ẋi

))
εidt

For a particle which satisfies the Euler-Lagrange equation, the final integral vanishes. Then, since t1 and t2
are arbitrary we must have

∂L

∂ẋi
εi = piε

i

conserved for all constants εi. Since εi is arbitrary, the momentum pi =
∂L
∂ẋi conjugate to xi is conserved as

a result of translational invariance.
Now consider an isolated system, i.e., a bounded system with potentials depending only on the relavite

positions, xa − xb of the N particles (a, b = 1, . . . , N). We may write the action for this system as

S [x] =

N∑
a=1

t2ˆ

t1

1

2
mẋ2

a −
∑
b 6=a

V (xa − xb)

 dt

Then shifting the entire system by the same vector a,

x̃a = xa − a
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leaves S invariant since

x̃a − x̃b = (xa − a)− (xb − a) = xa − xb
˙̃xa = ẋa

According to Noether’s theorem, the conserved quantity is

I =
∂L (x, ẋ)

∂ẋi
εi (x)

=
∂

∂ẋi

N∑
a=1

1

2
mẋ2

a −
∑
b6=a

V (xa − xb)

 ai

=

N∑
a=1

mẋiaa
i

Finally, since ai may be any constant vector we must have

P =

N∑
a=1

mẋa

so that the total momentum is conserved for an isolated system.

3.8.4 Rotational symmetry and conservation of angular momentum (2 dim)
Consider a 2-dimensional system with free-particle Lagrangian

L (x, y) =
1

2
m
(
ẋ2 + ẏ2

)
− V (ρ)

where ρ =
√
x2 + y2 is the radial distance from the origin. Then rotation

x → x′ = x cos θ − y sin θ
y → y′ = x sin θ + y cos θ

for any fixed value of θ leaves the action unchanged,

S [x] =

ˆ
Ldt

invariant. (Check this!)
For an infinitesimal change, θ � 1, the changes in x, y are

ε1 = δx

= x′ − x
= x cos θ − y sin θ − x

= x

(
1− 1

2!
θ2 + . . .

)
− y

(
θ − 1

3!
θ3 + . . .

)
− x

≈ −yθ
ε2 = δy

= y′ − y
≈ xθ
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Therefore, from Noether’s theorem, we have the conserved quantity,

∂L

∂ẋi
εi (x) = mẋε1 +mẏε2

= mẋ (−yθ) +mẏ (xθ)

= θm (xẏ − yẋ)

as long as x and y satisfy the equations of motion. Since θ is just an arbitrary constant to begin with,

J = m (ẏx− ẋy)
= xpy − ypx

and we can identify the angular momentum,

J = x× p

as the conserved quantity.
It is worth noting that J is conjugate to a cyclic coordinate. If we rewrite the action in terms of polar

coordinates, (r, ϕ), it becomes

S [r, ϕ] =

t2ˆ

t1

1

2
m
(
ṙ2 + r2ϕ̇2

)
so that ϕ is cyclic. The momentum conjugate to ϕ is

pϕ =
∂L

∂ϕ̇

= mr2ϕ̇

Differentiating tanϕ = y
x ,

1

cos2 ϕ
ϕ̇ =

ẏ

x
− yẋ

x2

ϕ̇ =
xẏ − yẋ
x2

cos2 ϕ

=
xẏ − yẋ
x2

(
x2

r2

)
giving the same result,

pϕ = mr2ϕ̇ = m (xẏ − yẋ) = J

We will generalize this result to 3-dimensions after a complete discussion of rotations.

3.9 Conservation of energy
Conservation of energy is related to time translation invariance. However, this invariance is more subtle
than simply replacing t → t + τ , which is simply a reparameterization of the action integral. Instead, the
conservation law holds whenever the Lagrangian does not depend explicitly on time so that

∂L

∂t
= 0

The total time derivative of L then reduces to
dL

dt
=

∑
i

∂L

∂xi
ẋi +

∂L

∂ẋi
ẍi +

∂L

∂t

=
∑
i

(
∂L

∂xi
ẋi +

∂L

∂ẋi
ẍi
)
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Using the Lagrange equations to replace
∂L

∂xi
=

d

dt

∂L

∂ẋi

in the first term, we get

dL

dt
=

∑
i

(
d

dt

(
∂L

∂ẋi

)
ẋi +

∂L

∂ẋi
ẍi
)

=
d

dt

(∑
i

∂L

∂ẋi
ẋi

)

Bringing both terms to the same side, we have

d

dt

(∑
i

∂L

∂ẋi
ẋi − L

)
= 0

so that the quantity

E ≡
∑
i

∂L

∂ẋi
ẋi − L

is conserved. The quantity E is called the energy.
For a single particle in a potential V (x), the conserved energy is

E ≡
∑
i

ẋi
∂L

∂ẋi
− L

=
∑
i

ẋi
∂

∂ẋi

(
1

2
mẋ2 − V (x)

)
−
(
1

2
mẋ2 − V (x)

)
=

∑
i

mẋiẋi −
(
1

2
mẋ2 − V (x)

)
=

1

2
mẋ2 + V (x)

For the velocity-dependent potential of the Lorentz force law,

S [x] =

t2ˆ

t1

[
1

2
mẋ2 − qφ+ qẋ ·A

]
dt

so that

E =
∑
i

ẋi
∂

∂ẋi

(
1

2
mẋ2 − qφ+ qẋ ·A

)
−
(
1

2
mẋ2 − qφ+ qẋ ·A

)
=

∑
i

ẋi
(
mẋi + qAi

)
−
(
1

2
mẋ2 − qφ+ qẋ ·A

)
=

1

2
mẋ2 + qẋ ·A− (−qφ+ qẋ ·A)

=
1

2
mẋ2 + qφ

is conserved.
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3.10 Scale Invariance
Physical measurements are always relative to our choice of unit. The resulting dilatational symmetry will
be examined in detail when we study Hamiltonian dynamics. However, there are other forms of rescaling a
problem that lead to physical results. These results typically depend on the fact that the Euler-Lagrange
equation is unchanged by an overall constant, so that the actions

S =

ˆ
Ldt

S′ = λ

ˆ
Ldt

have the same extremal curves.
Now suppose we have a Lagrangian which depends on some constant parameters (a1, . . . , an) in addition

to the arbitrary coordinates,
L = L

(
xi, ẋi, a1, . . . , an, t

)
These parameters might include masses, lengths, spring constants and so on. Further, suppose that each of
these variables may be rescaled by some factor in such a way that S changes by only an overall factor. That
is, when we make the replacements

xi → αxi

t → βt

ẋi → α

β
ẋi

ai → γiai

for certain constants (α, β, γ1, . . . , γn) we find that

L

(
αxi,

α

β
ẋi, γ1a1, . . . , γnan, βt

)
= λL

(
xi, ẋi, a1, . . . , an, t

)
for some constant λ which depends on the scaling constants. Then the Euler-Lagrange equations for the
system described by L

(
αxi, αβ ẋ

i, γ1a1, . . . , γnan, βt
)

are the same as for the original Lagrangian, and we
may make the replacements in the solution.

Consider the simple harmonic oscillator. The usual Lagrangian is

L =
1

2
mẋ2 − 1

2
kx2

If we rescale,

x̃ = αx

m̃ = βm

k̃ = γk

t̃ = δt

then the rescaled Lagrangian is

L̃ =
1

2

βα2

δ2
mẋ2 − 1

2
γα2kx2

and as long as β
δ2 = γ, we have S̃ = γα2S as a scaling symmetry. Scaling x doesn’t depend on the other

scales, so there’s no information there.
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Now consider a system with unit mass and unit spring constant,

m0 = 1

k0 = 1

and suppose this system is periodic, with period T0. Then rescaling, the mass, spring constant and period
become

m = βm0 = β

k = γk0 = γ

T = δT0

and scale invariance tells us that a periodic solution also holds for the scaled m, k and T as long as δ =√
β
γ =

√
m
k . Therefore

T = T0

√
m

k

and the frequency is proportional to
√

k
m .
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