
Chapter 1

Why Study Classical Mechanics?

1.1 Range of applicability
One answer lies in the wide range of applicability. Consider the known failures of classical mechanics.

1.1.1 Quantum limit:
Planck’s constant ~ is small, so quantum considerations usually only become important for phenomena on
the scale of atoms, whose size is determined by ~

mv for the orbiting electrons. Even for a particle as tiny as
an electron we can determine positions quite accurately. With its mass of 511 keV and a velocity of, say,
1000 m/s, we can determine positions to

∆x ∼ ~
mv

=
~c

mc2 vc

=
197Mev − fermi

5.11 × 10−1Mev × 1000
3×108

=
200 × 3 × 105 fermi

5.11 × 10−1

= 117 × 106fm

= 1.17 × 10−7m

1.1.2 Relativistic limit
Similarly, special relativity gives significant corrections only when objects move at a substantial fraction
of the speed of light. The fastest man-made object ever produced was not the Voyager spacecraft (35,000
mi/hr) as is often claimed, but the solar probes Helios-A and Helios-B which reached a maximum speed
of 70,220 m/s (252,792 km/hr, see Helios). This is still only 0.000234c, with c the speed of light, so the
relativistic corrections

(
∼ v2

c2

)
are only a few parts in 108. Interestingly, second place appears to be held by

a nuclear powered manhole cover (nuclear testing, Pascal B, gone wrong) which would have been traveling
at about 237,500 mph. This still is only v

c = 2.2 × 10−4. These small corrections are important only for
extremely fine measurements, where they are easily measured by modern atomic clocks.
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1.1.3 General relativity
Finally, general relativity is important for cosmology, precise orbit predictions in planetary and satellite
science, and the GPS system. Errors using Newtonian gravity are of order GM

Rc2 , where R is the distance from
a mass M . This is of order 6.95 × 10−7 near the surface of Earth.

For the GPS system, we would like to measure positions on the surface of Earth as determined by satellites
at an altitude of 20,200 km. The fractional accuracy of such a measurement is limited by

∆x

2.02 × 107m
∼ GM

Rc2

∆x ∼ 2.02 × 107m× 6.95 × 10−7

∆x ∼ 14m

Therefore, if accuracy needs to be better than the nearest 50 feet, general (and special) relativity must be
used.

Thus, for sizes larger than atoms and smaller than the solar system, and ordinary velocities, classical
mechanics is an excellent approximation.

1.1.4 Mathematical techniques
A very important reason to study classical mechanics is that it provides a familiar, intuitive arena in which to
learn solution techniques. You have likely compared Coulomb’s law to Newton’s law of Universal Gravitation
for insights. There are many examples. If we rewrite Newton’s second law as the second-order differential
equation,

d2xi

dt2
=

1

m
F i (x, v, t)

where
(
xi, F i

)
for i = 1, 2, 3 are the components of the position and force vectors, it has the same form as

the geodesic equation of general relativity,

d2xα

dτ2
= −Γαµνu

µuν

where α = 0, 1, 2, 3 and the right side depends on Γαµν
(
xβ
)
and the components of the velocity vector, uµ.

A second example is provided by the Schrödinger equation, which is identical in many respects to a
classical Fokker-Planck diffusion equation, and we may apply similar methods to its solution.

1.1.5 First approximation
Because the corrections to Newtonian mechanics are so small, the Newtonian solution to problems is close
to the exact solution, and therefore makes a good place to start in making a perturbative approximation to
the full solution. Alternatively, if we have an exact solution in general relativity or quantum mechanics, we
may be able to make sense of it by comparing terms in the classical solution.

1.1.6 Intuition
We have a great deal of direct experience with the world, and the terms of classical mechanics line up well
with this experience. We can use this familiarity to guess how a system will behave. With more precise
theories, having a similar picture of what is going on becomes difficult. For example, the first string theory
was an attempt to model mesons. Mesons are two particle systems bound by the strong interaction, so Y.
Nambu reasoned that the “lines of force” must be strongly concentrated between the two quarks, like a piece
of string connecting them. This classical intuition led him to write a simple Lagrangian for string.
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Chapter 2

Review of Newtonian Mechanics

Basic definitions
We define several important concepts. We picture the world as a 3-dimensional Euclidean space with points
labeled by triples of numbers, often simply the Cartesian (x, y, z), but others as well. Events are parameter-
ized by the passage of time, so a point particle is described by a curve

r (t) = (x (t) , y (t) , z (t))

= (r (t) , θ (t) , ϕ (t))

in whatever coordinates we choose, with boldface denoting a vector. Notice that the position vector r (t) is
a dynamical variable, not a coordinate. As t varies, r (t) traces out a curve in space.

The time-rate-of-change of the position vector is called the velocity,

v (t) =
dr (t)

dt
= ṙ (t)

and is tangent to this curve. Notice that for simplicity we will sometimes denote the time derivative with a
dot over the variable. The acceleration is the rate of change of velocity,

a (t) =
dv (t)

dt

=
d2r (t)

dt2

= r̈ (t)

Particles are characterized by a constant called the mass, m, which reflects their resistance to change of
velocity. Defining the momentum as the product

p = mv

we write Newton’s second law as
F =

dp (t)

dt

The force, F, is to be taken intuitivelty and is determined by the particular problem. It is essentially
that effort which produces a change of momentum. For example, if we stretch a spring it has the ability to
move a mass attached to the end. Since this ability doubles if we double the stretch of the spring, we may
write the force of a spring as proportional to the difference between the location of its endpoints,

Fspring = −k (r2 − r2)
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where the spring constant, k, characterizes the strength of the spring. This form of force is Hooke’s Law.
There are many classical forces that have been identified:

0 Zero force
−k (r2 − r2) Hooke′s law
q (E + v ×B) Lorentz force

N Normal force
−µN Friction

−GMm
r2 r̂ Gravitation

−kQq
r2 r̂ Coulomb′s law

Once the forces on a particle have been identified, Newton’s second law becomes an ordinary, second order
differential equation ∑

F =
d

dt

(
m
dr (t)

dt

)
where the sum is over all forces on the particle. This means that two initial vector conditions are required
to give a unique solution to a problem. If the time starts at t = t0, then the initial conditions may be taken
as the position and velocity at t0,

r0 = r (t0)

v0 = v (t0)

Conservation laws
We now develop three conservation laws.

Conservation of linear momentum

If no force acts, then F = 0 and we have
dp (t)

dt
= 0

Integrating gives
p (t) = p0 = mv (t0)

The linear momentum is therefore constant; we say that linear momentum, p, is conserved.

Conservation of angular momentum

We define the angular momentum of a particle at position r (t), relative to a fixed position R, to be

L ≡ (r (t) −R) × p

and the torque about the same location to be

N ≡ (r (t) −R) × F

Then taking the cross product of the relative position, r (t) −R, with Newton’s second law, we have

(r (t) −R) × F = (r (t) −R) × dp (t)

dt

N =
d

dt
((r (t) −R) × p (t)) −

(
d

dt
(r (t) −R)

)
× p (t)
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where we use the product rule on the right. Since

d

dt
(r (t) −R) =

dr (t)

dt
− dR

dt
= v (t) − 0

we may simplify. Writting p (t) = mv (t), the right side becomes

d

dt
((r (t) −R) × p (t)) −

(
d

dt
(r (t) −R)

)
× p (t) =

dL

dt
− v (t) ×mv (t)

=
dL

dt

since v (t) × v (t) = 0. We therefore have

N =
dL

dt

It follows immediately that L is conserved if the torque vanishes.

Conservation of energy

Suppose the force on a particle is a function of particle position, F = F (r). Then we may integrate the
second law by taking the dot product with the velocity:

F =
dp (t)

dt

F · v =
dp

dt
· v

F · dr
dt

= m
dv

dt
· v

F · dr = mv · dv

Integrating from the initial values to the values at a general time, t, we have

r(t)ˆ

r0

F · dr = m

v(t)ˆ

v0

v · dv

=
1

2
mv2 − 1

2
mv2

0

= T − T0

where we define the kinetic energy, T (t) = 1
2mv2. In general, the integral on the left side depends on the

path of integration. Such a path-dependent integral is not a function, but is called instead a functional.
Along any path we define the work as

W12 =

r2ˆ

r1

F · dr

so that the work is equal to the change in kinetic energy,

W12 = T2 − T1

This is the work-energy theorem.
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Let x (λ) be any curve in 3-space, and take it as the path of integration. Then the work is a functional,
denoted with square brackets, W [x (λ)], where

W [x (λ)] =

ˆ

x(λ)

F · dx

=

ˆ

x(λ)

F · dx
dλ
dλ

Notice that any change in the curve may change the value of W ; the value of W depends on the entire curve,
not just on a single point.

Suppose the result of integration is independent of path. Then the value of the integral depends only on
the endpoints, and we define the potential,

V (r) ≡ −
rˆ

r0

F · dr

Since the potential evaluated along any two paths, C1, C2 is the same, the difference of the integrals along
these paths must vanish

0 =

ˆ

C2

F · dr−
ˆ

C1

F · dr

=

˛

C2−C1

F · dr

where C2 − C1 is the combined, closed loop up C2 and back down C1. Applying Stoke’s theorem, this
becomes

0 =

˛

C2−C1

F · dr

=

¨

S

(O× F) · n̂ d2x

where S is any 2-dimensional surface with the curve C2 − C1 as its boundary, and n̂ is the unit normal to
S. Since the closed curve C2 − C1 is completely arbitrary, the surface S is as well. Tipping S in arbitrary
directions means that n̂ is also arbitrary. Choosing S to be an infinitesmally small region near a point x, we
may approximate the surface integral arbitrarily well so that

0 = [(O× F) · n̂] (x) ∆S

where ∆S is the nonzero, infinitesimal area. This must vanish, and since the normal may be any direction,
the curl of the force must vanish,

O× F = 0

Since the point x was arbitrary, the curl must vanish at every point. This is a sufficient condition for the
existence of a potential for F.

To show that it is also necessary, we invert the definition of V using the fundamental theorem of calculus,
to write the force as the gradient of the potential,

F = −OV (r)

6



Then, whenever the force comes from a potential, its curl must vanish, since the curl of a gradient is always
zero:

O× F = −O× OV (r)

= 0

Therefore, a potential exists for a force if and only if the curl of the force vanishes.
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